

14450 JFK Blvd., Suite 400, Houston, TX 77032 Tel: (713) 330 8500 Fax: (281) 987 3500 Internet: <u>www.rpsgroup.com/energy</u>

May 19, 2008

Mr. Richard Hyde, P.E., Texas Commission on Environmental Quality (TCEQ) Office of Permitting, Remediation, and Registration Air Permits Division (MC-163) P.O. Box 13087 Austin, TX 78711-3087

Re: <u>New Source Review Air Quality Permit Application</u>: Las Brisas Energy Center, LLC Circulating Fluidized-Bed (CFB) Steam Electric Generation Facility Corpus Christi, Nueces County

Dear Mr. Hyde:

On behalf of Las Brisas Energy Center, LLC (LBEC), RPS JDC, Inc. (RPS JDC) is submitting the enclosed permit application for the construction of a circulating fluidized-bed (CFB) steam electric generating facility in Corpus Christi, Nueces County. The facility will consist of four petroleum coke fired CFB steam electric generating units or boilers that will produce electricity.

The facility will use the best available control technology (BACT) to reduce emissions including limestone injection directly into the boilers to reduce sulfur dioxide emissions, selective non-catalytic reduction (SNCR) to reduce nitrogen oxide emissions, a polishing scrubber to further reduce acid gas emissions, and finally a fabric filter to reduce particulate and metals emissions.

The proposed facility is a major source for all of the criteria pollutants emitted from the facility; therefore, a Prevention of Significant Deterioration (PSD) permit is required. The complete PSD analysis will be included in an air quality analysis. The air quality analysis will be submitted after TCEQ reviews and approves the proposed emission rates. A permit application fee of \$75,000 has been submitted to the TCEQ Financial Administration Division.

We wish to thank you in advance for you consideration of this application. If you have any questions, please feel free to contact me at (832) 239-8019 or Mr. John Upchurch of LBEC at (281) 636-2017.

Sincerely,

RPS JDC, Inc.

Shanon G. DiSorbo, P.E. Vice President

SGD/tc

Enclosure

cc: Mr. David Turner, Air Section Manager, TCEQ Region 14 Mr. Jeff Robinson, Air Permits Section (6PD-R), EPA Region 6 Mr. John Upchurch, Managing Partner, Las Brisas Energy Center, LLC bc: Ms. Kathleen Smith, Managing Partner, Las Brisas Energy Center, LLC

Mr. John Riley, Partner, Vinson & Elkins, Austin

Mr. Neal Nygaard, Manager, Houston Office, RPS JDC, Inc.

Mr. Joe Kupper, P.E., Senior Consulting Engineer, RPS JDC, Inc.

Mr. Jarrett Cantrell, Business Development Mgr., Bechtel Power Corporation, Frederick, MD

Mr. Tom Jarobe, Project Director, Bechtel Power Corporation, Frederick, MD

Mr. Don Koza, Project Engineer, Bechtel Power Corporation, Frederick, MD

14450 JFK Blvd., Suite 400, Houston, TX 77032 Tel: (713) 330 8500 Fax: (281) 987 3500 Internet: <u>www.rpsgroup.com/energy</u>

Application for Texas Commission on Environmental Quality New Source Review Air Quality Permit

Las Brisas Energy Center, LLC Corpus Christi, Nueces County, TX

May 2008

and to SHANON G. DISÓRBO

Table of Contents

List of Sections

Section 1 1.1 1.2	Introduction Purpose of this Application Application Organization	. 1 . 1 . 2
Section 2	Administrative Forms	. 4
Section 3	Area Map and Plot Plan	15
Section 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.0	Process Description. Circulating Fluidized Bed (CFB) Boilers Auxiliary Boilers Propane Vaporizers Material Handling Facilities Diesel-Fired Emergency Generators. Diesel-Fired Fire Water Pumps Diesel-Fired Boiler Feed Water Pumps. Storage Tanks Fugitive Emissions.	18 19 19 21 21 21 22
4.10	Cooling Towers	22
5.1 5.2 5.3 5.4 5.4.1 5.4.2 5.4.3 5.4.3 5.4.4 5.4.5	Circulated Fluidized Bed (CFB) Boilers	24 25 25 25 25 25 25 25 26 26 26
5.4.0 5.4.7 5.4.8 5.5 5.6 5.7 5.8 5.9 5.10	Bottom Ash Activated Carbon Diesel-Fired Emergency Generators Diesel-Fired Fire Water Pumps Diesel-Fired Boiler Feed Water Pumps Storage Tanks Fugitive Emissions Cooling Towers	26 27 27 27 27 27 28 28 28 28
Section 6 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5	BACT Analysis Circulated Fluidized Bed (CFB) Boilers NO _x Emissions SO ₂ Emissions CO Emissions VOC Emissions PM/PM ₁₀ Emissions	31 32 32 34 34 35 35

6.1.6	H ₂ SO ₄ Emissions	36
6.1.7	HCI and HF Emissions	36
6.1.8	Pb Emissions	37
6.1.9	Hg Emissions	37
6.1.10	NH ₃ Emissions	38
6.1.11	Start-Up Emissions	38
6.2	Auxiliary Boilers	38
6.3	Propane Vaporizers	38
6.4	Material Handling Facilities	39
6.4.1	Pet Coke	39
6.4.2	Limestone	39
6.4.3	Lime	39
6.4.5	Sand	40
6.4.6	Fly Ash	40
6.4.7	Bottom Ash	40
6.4.8	Activated Carbon	40
6.5	Diesel-Fired Emergency Generators	
6.6	Diesel-Fired Fire Water Pumps	
6.7	Diesel-Fired Boiler Feed Water Pumps	
6.8	Storage Tanks	
6.9	Eugitive Emissions	41
6.10	Cooling Towers	42
0		
Section 7	PAL Emissions Cap Compliance Methodology	43
7.1	NO _x Emissions	43
7.2	SO ₂ Emissions	43
7.3		44
7.4		44
7.5		44
7.6	H_2SO_4 Emissions	45
1.1	Recordkeeping	45
Section 8	Permit Application Fee	46
Section 0	Provention of Significant Deterioration Review	40
	Air Quality Manitaring Requirements	49
9.1	Air Quality Modeling Requirements	49
9.2	Additional Impacts Analysis	49
9.5		49
Section 10	General Application Requirements	52
10.1	Protection of Public Health and Welfare - 30 TAC § 116.111(a)(2)(A)	52
10.1.1	Chapter 101 - General Air Quality Rules	52
10.1.2	Chapter 106 – Permits by Rule	52
10.1.3	Chapter 111 – Visible Emissions and Particulate Matter	52
10.1.4	Chapter 112 - Sulfur Compounds	52
10.1.5	Chapter 113 – Toxic Materials	52
10.1.6	Chapter 114 – Motor Vehicles	53
10.1.7	Chapter 115 - Volatile Organic Compounds (VOC)	53
10.1.8	Chapter 116 – New Construction or Modification	53
10.1.9	Chapter 117 - Nitrogen Compounds	53
10.1.1	0 Chapter 118 – Air Pollution Episodes	53
10.1.1	1 Chapter 122 – Federal Operating Permits	53
10.1.1	2 Impact on Schools	53

10.2	Measurement of Emissions - 30 TAC § 116.111(a)(2)(B)	53
10.3	BACT Technology - 30 TAC § 116. 111(a)(2)(C)	53
10.4	NSPS - 30 TAC § 116. 111(a)(2)(D)	53
10.5	NESHAP - 30 TAC § 116.111(a)(2)(E) and § 116.111(a)(2)(F)	54
10.6	Performance Demonstration - 30 TAC § 116.111(a)(2)(G)	54
10.7	Nonattainment Review - 30 TAC § 116.111(a)(2)(H)	54
10.8	PSD Review – 30 TAC § 116.111(a)(2)(I)	54
10.9	Air Dispersion Modeling – 30 TAC § 116.111(a)(2)(J)	54
10.10	HAP – 30 TAC § 116.111(a)(2)(K)	55
10.11	Mass Cap and Trade Allowances - 30 TAC § 116.111(a)(2)(L)	55
10.12	PAL Facilities – 30 TAC § 116.182(a)(1)	55
10.13	PAL Emission Calculation Basis – 30 TAC § 116.182(a)(2)	55
10.14	PAL Cap Compliance – 30 TAC 116.182(a)(3)	55
10.15	PAL Monitoring and Recordkeeping – 30 TAC 116.182(a)(4)	55
Section 1 ²	1 Disaster Review	56

List of Tables

Table 1(a)	Project Emission Rates	.30
Table 30	Estimated Capital Cost and Fee Verification	.47
Table PSD-1	PSD Air Quality Applicability Supplement	.50

List of Figures

Figure 3-1	Area Map	16
Figure 3-2	Plot Plan	17
Figure 4-1	Process Flow Diagram	23

List of Appendices

- Appendix A Emission Calculation Details
- Appendix B TCEQ Table 2 Material Balance
- Appendix C TCEQ Equipment Tables

Section 1 Introduction

Las Brisas Energy Center, LLC (LBEC) proposes to construct and operate a new circulating fluidized-bed (CFB) steam electric generation facility on the Joe Fulton Corridor bordering the west side of the Port of Corpus Christi Bulk Terminal in Corpus Christi, Nueces County, Texas. The facility, with the nominal capable of generating 1,200 megawatts, will consist of four petroleum coke-fired CFB steam electric generating units or boilers that will produce electricity to be added the existing regional grid. The facility will use best available control technology (BACT) to reduce emissions including limestone injection directly into the boilers to reduce sulfur dioxide emissions, selective non-catalytic reduction (SNCR) to reduce nitrogen oxide emissions, a polishing scrubber to further reduce acid gas emissions, and finally a fabric filter to reduce particulate and metals emissions.

1.1 Purpose of this Application

This document constitutes the TCEQ permit application for the proposed electric generation facility which includes: four CFB boilers, two auxiliary boilers, two propane vaporizers, thirteen atmospheric storage tanks, anhydrous ammonia pressure storage tanks, two cooling towers, two diesel-fired emergency generators, one diesel-fired fire water pump, four diesel-fired fire water booster pumps, four diesel-fired boiler feed water pumps, piping component fugitives, and the equipment associated with material handling operations for petroleum coke, limestone, lime, sand, water treatment, activated carbon, and ash disposal. The application contains the required emissions information and all additional supporting information and forms required for application review.

The proposed facility will be a new major source as defined by the federal Prevention of Significant Deterioration (PSD) regulations and will emit nitrogen oxides (NO_x), volatile organic compounds (VOC), particulate matter (PM), particulate matter less than 10 microns (PM₁₀), particulate matter less than 2.5 microns (PM_{2.5}), carbon monoxide (CO), sulfur dioxide (SO₂), and sulfuric acid (H₂SO₄), in quantities that trigger PSD review for these pollutants. It should be noted that for purposes of this application, PM₁₀ is being considered a surrogate for PM_{2.5} emissions. LBEC is also requesting that a Federal Plant-wide Applicability Limit (PAL) be established for each pollutant regulated under the PSD program.

The facility will be a major source for Title V purposes and a federal operating permit application will be submitted prior to operation as specified by 30 TAC§122.130(c)(1). In addition, because the facility will be subject to the Acid Rain Program established under Title IV of the 1990 Federal Clean Air Act Amendments, LBEC will be required to obtain an Acid Rain Permit. As such, LBEC will submit the required Acid Rain Permit application no later than 24 months before the facility begins operation.

1.2 Application Organization

This application is organized into the following sections:

Section 1 presents the application objectives and organization.

Section 2 contains TCEQ administrative Form PI-1 and CORE Data From.

<u>Section 3</u> contains an Area Map showing the facility location and a Plot Plan showing the location of the facilities referenced in this submittal.

Section 4 contains a process description for proposed facility.

<u>Section 5</u> contains a discussion of the estimated emissions from the sources included in this application as well as Table 1(a).

Section 6 presents the BACT analysis for the emissions sources included in this application.

Section 7 contains a discussion of the PAL emissions cap calculation methodology.

<u>Section 8</u> contains information on the permit application fee, Table 30, and a copy of the fee check.

<u>Section 9</u> addresses the Prevention of Significant Deterioration (PSD) review. Air quality impacts are addressed briefly in this section; however, the complete air quality analysis will be performed and submitted in a separate document after the TCEQ has approved the proposed emission rates.

<u>Section 10</u> presents the General Application Requirements that address the applicability of state and federal air regulations to the proposed application.

Section 11 presents the Disaster Review.

Appendix A contains emission calculation details.

<u>Appendix B</u> contains a Table 2, Material Balance.

Appendix C contains TCEQ equipment tables.

Section 2 Administrative Forms

This section contains the following TCEQ forms:

- Form PI-1, General Application for Air Preconstruction Permits and Amendments
- TCEQ CORE Data Form

Texas Commission on Environmental Quality Form PI-1 General Application for Air Preconstruction Permit and Amendments

<u>Update</u>: The TCEQ **requires** that a Core Data Form be submitted on all incoming applications unless a Regulated Entity and Customer Reference Number have been issued by the TCEQ <u>and</u> no core data information has changed. For more information regarding the Core Data Form, call (512) 239-5175 or go to the TCEQ Web site at <u>www.tceq.state.tx.us/permitting/central_registry/guidance.html</u>.

I. APPLICANT INFORMATION					
A. Company or Other Legal Name: Las H	Brisas Energy Center, LLC				
Texas Secretary of State Charter/Registrat	ion Number (if applicable):				
B. Company Official Contact Name: Mr.	John Upchurch				
Title: Managing Partner					
Mailing Address: 11011 Richmond Ave., S	Suite 350				
City: Houston	State: TX		Zip Code: 77042		
Telephone No: 281-636-2017	Fax No.:	E-ma john	ail Address: upchurch@lasbrisasenerg	y.com	
C. Technical Contact Name: Mr. Shanon	DiSorbo				
Title: Vice President					
Company Name: RPS JDC, Inc.					
Mailing Address: 14450 JFK Blvd., Suite	400				
City: Houston	State: TX		Zip Code: 77032		
Telephone No.: 832-239-8019Fax No.: 281-987-3500E-mail Address: disorbos@rpsgroup.com					
D. Facility Location Information:					
Street Address: on the Joe Fulton Corridor	bordering the west side of the Port of C	Corpus	s Christi Bulk Terminal		
If no street address, provide clear driv	ing directions to the site in writing:				
City: Corpus Christi	County: Nueces		Zip Code: 78409		
E. TCEQ Account Identification Number	(leave blank if new site or facility):				
F. Is a TCEQ Core Data Form (TCEQ Fe	orm No. 10400) attached?			XES INO	
G. TCEQ Customer Reference Number (leave blank if unknown):					
H. TCEQ Regulated Entity Number (leav	ve blank if unknown):				
II. IMPORTANT GENERAL INFORMATION					
A. Is confidential information submitted	with this application?			🗌 YES 🖾 NO	
If "YES," is each "confidential" page marked "CONFIDENTIAL" in large red letters?					

II.	IMPORTANT GENERAL INFORMA	ATION (continued)				
B.	Is this application in response to a TCEO investigation or enforcement action?					TYES NO
	If "YES", attach a copy of any correspondence from the TCEO					
C.	Number of New Jobs: 70-85					
D.	Names of the State Senator and district r	number for this facility	site: Senator Juan 'C	Chuy' Hinojo	osa, District 2	20
	Names of State Representative and distr	ict number for this facil	ity site: Representati	ve Abel Her	rero, District	: 34
E.	For Concrete Batch Plants, name of the	County Judge for this fa	acility site:			
Ma	iling Address:					
Cit	y:	State:		Zip Code:		
F.	F. For Concrete Batch Plants, is the facility located in a municipality or an extraterritorial jurisdiction of a municipality? If "YES " list the neme(s) of the Preciding Officer(s) for this facility site:					UYES NO
Ma	iling Address:					
Cit	y:	State:		Zip Code:		
III	. FACILITY AND SOURCE INFO	DRMATION				
A.	Site Name: Las Brisas Energy Center, L	LC				
B.	Area Name/Type of Facility: Las Brisas	Energy Center, LLC			Perman	ent 🗌 Portable
C.	Principal Company Product or Business	: Electric Power Genera	ution			
	Principal Standard Industrial Classification	ion Code: 4939				
D.	Projected Start of Construction Date: Jun	ne 2009	Projected Start of C	Deration Da	te: Novemb	er 2012
IV.	IV. TYPE OF PERMIT ACTION REQUESTED					
A. Permit Number (<i>if existing</i>):						
B.	B. Is this an initial permit application?					
If "	If "YES," check the type of permit requested (check all that apply): State Permit Nonattainment Federal Permit Flexible Permit Prevention of Significant Deterioration Federal Permit Multiple Plant Permit Hazardous Air Pollutants Permit Federal Clean Air Act § 112(g) Other: PAL					

IV.	TYPE OF PERMIT ACTION RE	QUESTED (continued)			
C.	C. Is this a permit amendment?				
If "YES," check the type of permit requested (check <u>all</u> that apply): State Permit Amendment Flexible Permit Amendment Multiple Plant Permit Amendment Nonattainment Major Modification Prevention of Significant Deterioration Major Modification Hazardous Air Pollutants Permit Federal Clean Air Act § 112(g) Modification					
Oth	er:		1 .1		
D.	Is a permit renewal application being sub Senate Bill 1673? [THSC 382.055(a)(2)]	mitted in conjunction with this amendment in accor (80 th Legislative)	dance with	YES 🖾 NO	
E.	Is this application for a change in locatio	n of previously permitted facilities?		□YES ⊠ NO	
If "	YES," answer E. 1. and E. 2.				
1.	Current location of facility:				
Stre	eet Address (If no street address, provide o	clear driving directions to the site in writing.):			
City	City: County: Zip Code:				
2.	2. Will the proposed facility, site, and plot plan meet all current technical requirements of the permit special conditions?			UYES NO	
	If "NO," attach detailed information.				
F.	Are there any standard permits, exemption	ons or permits by rule to be consolidated into this pe	rmit?	TYES NO	
G.	G. Are you permitting a facility or group of facilities that have planned maintenance, startup and shutdown emissions that cannot be authorized by a permit by rule or standard permit or that are authorized by a permit by rule or standard permit and are being rolled into this permit?			🖾 YES 🗌 NO	
	If "YES," attach information on any changes to emissions under this application as specified in Section VIII. and Section IXX.				
If "YES," answer G. 1 through G. 3.					
1.	Are the activities to be included in this p	ermit covered by any previously existing MSS authors	orizations?	🗌 YES 🖾 NO	
	If "YES," provide a listing of all other authorizations (permit by rule or standard permit and the associated registration number if any).				
2.	Have the emissions been previously subr	nitted as part of an emissions inventory?		🗌 YES 🖾 NO	
3.	List which years the MSS activities were	included in emissions inventory submittals:			

IV.	TYPE OF PERMIT ACTION REQUESTED (continued)	
H.	Federal Operating Permit Requirements (30 TAC Chapter 122 Applicability) XES NO] To be Determined
	Is this facility located at a site required to obtain a federal operating permit under 30 TAC Chapter 122?	
1.	Identify the requirements of 30 TAC Chapter 122 that will be triggered if this PI-1 application is approved.	
	FOP Significant Revision FOP Minor Application for an FOP Revision	
	Operational Flexibility/Off-Permit Notification 🗌 Streamlined Revision for GOP 🖾 To be determined 🗌 N	one
2.	Identify the type(s) of FOP(s) issued and/or FOP application(s) submitted/pending for the site (check all that	apply)
□ sub	SOP GOP GOP application/revision application: submitted or under APD review – A Title V application omitted at a later date.	ion will be
	SOP application/revision application: submitted or under APD review 🔀 N/A	
v.	PERMIT FEE INFORMATION	
A.	Fee paid for this application:	\$75,000
1.	Is a copy of the check or money order attached to the original submittal of this application?	🗌 NO 🗌 N/A
2.	Is a Table 30 entitled, "Certification of estimated Capital Cost and Fee Verification," attached?	YES 🗌 NO
VI.	PUBLIC NOTICE APPLICABILITY	
A.	Is this a new permit application?	🖾 YES 🗌 NO
B.	Is this an application for a major modification of a PSD, NA or 30 TAC § 112(g) permit?	🗌 YES 🖾 NO
C.	Is this a state permit amendment application?	🗌 YES 🖾 NO
If "	YES," answer C. 1. through C. 3.	
1.	Is there any change in character of emissions in this application?	🗌 YES 🗌 NO
	Is there a new air contaminant in this application?	U YES NO
2.	Do the facilities handle, load, unload, dry, manufacture, or process grain, seed, legumes, or vegetables fibers (agricultural facilities)?	YES NO
3.	List the total annual emission increases associated with the application (<i>list <u>all</u> that apply</i>): Volatile Organic Compounds (VOC): tpy Particulate Matter (PM): Sulfur Dioxide (SO ₂): tpy Carbon Monoxide (CO): tpy Other air contaminants not listed above: tpy List: List:	tpy tpy tpy

VI. PUBLIC NOTICE APPLICABIL	ITY (continued)				
D. Is this a change of location application?					🗌 YES 🖾 NO
If "YES," answer D. 1. through D. 3.					
1. Is the new facility site located in or cont	iguous to the right-of-w	way of a public	works p	project?	🗌 YES 🗌 NO
2. Is there a permitted facility occupying the	ne new site?				🗌 YES 🗌 NO
If "YES," please list the permit number:					
3. Have portable facilities occupied the new	w site at any time in the	alast two years	?		🗌 YES 🗌 NO
VII. PUBLIC NOTICE INFORMATI	ON (complete if applic	able)			
A. Responsible Person:					
Name: Mr. John Upchurch		Title: Managin	ng Partr	er	
Mailing Address: 11011 Richmond Ave., Su	ite 350				
City: Houston	State: TX			Zip Code: 77042	
Telephone No.: 281-636-2017	Telephone No.: 281-636-2017 Fax No.: E-mail johnupchurch@lasbrisasenen		Address: gy.com		
B. Technical Contact: Mr. Shanon DiSorbo)				
Company Name:					
Name: RPS JDC, Inc.		Title: Vice Pr	esident		
Mailing Address: 14450 JFK Blvd.					
City: Houston	State: TX			Zip Code: 77032	
Telephone No.: 832-239-8019	Fax No.: 281-987-350	0	E-mail	Address: disorbos@rj	osgroup.com
C. Application in Public Place:					
Name of Public Place: Corpus Christi Centra	l Library				
Physical Address: 805 Comanche St.	City: Corpus Christi			County: Nueces	
The public place has granted authorization to	place the application f	for public view	ing and	copying?	🖾 YES 🗌 NO
D. Is a bilingual program required by th	e Texas Education Cod	e in the School	l Distric	t?	🖾 YES 🗌 NO
Are the children who attend either the eligible to be enrolled in a bilingual particular to be enrolled in a bilingual	e elementary school or rogram provided by the	r the middle so district?	chool cl	osest to your facility	XES NO
If yes, which language is required by	the bilingual program	? Spanish			YES NO

VII	I. SMALL BUSINESS CLASSIFICATION (required)	
А.	Does this company (including parent companies and subsidiary companies) have fewer than 100 employees or less than \$6 million in annual gross receipts?	🖾 YES 🗌 NO
B.	Is the site a major source under 30 TAC Chapter 122, Federal Operating Permit Program?	🖾 YES 🗌 NO
C.	Are the site emissions of any individual air contaminant greater than 50 tpy?	🖾 YES 🗌 NO
D.	Are the site emissions of all air contaminants combined greater than 75 tpy?	🖾 YES 🗌 NO
IX.	TECHNICAL INFORMATION	
A.	Is a current area map attached?	\bowtie YES \square NO
Are	e any schools located within 3,000 feet of this facility?	🗌 YES 🖾 NO
B.	Is a plot plan of the plant property attached?	\square YES \square NO
C.	Is a process flow diagram and a process description attached?	\bowtie YES \square NO
D.	Maximum Operating Schedule: 24 Hours/Day 7 Days/Week 52 Week	ks/Year
Sea	sonal Operation?	🗌 YES 🔀 NO
If "	YES," please describe	
E.	Are worst-case emissions data and calculations attached?	\bowtie YES \square NO
1.	Is a Table 1(a) entitled, "Emission Point Summary Table," attached?	XES INO
2.	Is a Table 2 entitled, "Material Balance Table," attached?	YES 🗌 NO
3.	Are equipment, process, or control device tables attached?	YES 🗌 NO
F.	Are actual emissions for the last two years (determination federal applicability) attached?	🗌 YES 🖾 NO
X.	STATE REGULATORY REQUIREMENTS Applicants must be in compliance with all applicable state regulations to obtain a permit or amendmen	t.
A.	The emissions from the proposed facility will comply with all rules and regulations of the TCEQ and details are attached?	🖾 YES 🗌 NO
B.	The proposed facility will be able to measure emissions of significant air contaminants and details are attached?	🛛 YES 🗌 NO
C.	A demonstration of Best Available Control Technology (BACT) is attached?	YES INO
D.	The proposed facilities will achieve the performance in the permit application and compliance demonstration or record keeping information is attached?	🖾 YES 🗌 NO
E.	Is atmospheric dispersion modeling attached?	☐ YES ⊠ NO

X.	STATE REGULATORY REQUIREMENTS (continued)				
App	Applicants must be in compliance with all applicable state regulations to obtain a permit or amendment.				
F.	Does this application involve any air contaminants for which a "disaster review" is required?	YES 🗌 NO			
	If "YES," details must be attached.				
Not Do	te: For a list of air contaminants for which a "disaster review" will be required, refer to the NSRPD Dis cument at <u>www.tceq.state.tx.us/permitting/air/rules/federal/63/63hmpg.html</u> .	saster Review Guidance			
G.	Is this facility or group of facilities located at a site within the Houston/Galveston nonattainment area? (Brazoria, Chambers, Fort Bend, Galveston, Harris, Liberty, Montgomery, or Waller Counties)	🗌 YES 🖾 NO			
1.	Does the facility or group of facilities located at this site have an uncontrolled design capacity to emit 10 tpy or more of NO_X ?	X YES 🗌 NO			
2.	Is this site subject to 30 TAC Chapter 101, Subchapter H, Division 3 (Mass Emissions Cap and Trade)?	YES 🖾 NO			
3.	Does this action make the site subject to 30 TAC Chapter 101, Subchapter H, Division 3 (Mass Emissio Cap and Trade)?	ons 🗌 YES 🖾 NO			
4.	Does this action require the site to obtain additional emission allowances?	🗌 YES 🖾 NO			
	Applicants must be in compliance with all applicable federal regulations to obtain a permit of the following questions is answered "YES, the application must contain detailed attachments add identify federal regulation Subparts, show how requirements are met, and include compliance in	r amendment. If any of dressing applicability, formation.			
A.	Does a Title 40 Code of Federal Regulations Part 60, (40 CFR Part 60) New Source Performance Standard (NSPS) apply to a facility in this application?	X YES INO			
В.	Does 40 CFR Part 61, National Emissions Standard for Hazardous Air Pollutants (NESHAP) apply to a facility in this application?	YES 🗌 NO			
C.	Does a 40 CFR Part 63, Maximum Achievable Control Technology (MACT) standard apply to a facility in this application? <i>LBEC reserves the right to evaluate further</i>	$\begin{array}{c} \mathbf{y} \\ \mathbf{\Box} \\ \mathbf{YES} \\ \mathbf{NO} \\ \mathbf{NO} \end{array}$			
D.	Does nonattainment permitting requirements apply to this application?	🗌 YES 🖾 NO			
E.	Does prevention of significant deterioration permitting requirements apply to this application?	YES 🗌 NO			
F. Does Hazardous Air Pollutant Major Source [FCAA § 112(g)] requirements apply to this application? <i>LBEC reserves the right to evaluate further.</i>		YES 🗌 NO			
XI	XII. COPIES OF THIS APPLICATION				
A.	Has the required fee been sent separately with a copy of this Form PI-1 to the TCEQ Revenue Section? (<i>MC 214, P.O. Box 13088, Austin, Texas 78711</i>).	YES 🗌 NO 🗌 NA			
B.	Are the Core Data Form, Form PI-1, and all attachments being sent to the TCEQ in Austin?	YES NO			
OP in A If "	TIONAL: Has an extra copy of the Core Data Form, Form PI-1 and all attachments been sent to the TCF Austin? YES." please mark this application as "COPY."	EQ 🗌 YES 🖾 NO			
	······································				

XII. COPIES OF THIS APPLICATION (continued)	
 C. Is a copy of the Core Data Form, the Form PI-1, and all attachments being sent to the appropriate TCEC regional office 	Q XES □ NO
D. Is a copy of the Core Data Form, the Form PI-1, and all attachments being sent to each appropriate loca air pollution control program(s)?	I 🗌 YES 🛛 NO
List all local air pollution control program(s):	
E. Is a copy of the Core Data Form, Form PI-1, and all attachments (without confidential information) bei sent to the EPA Region 6 office in Dallas, Texas? (federal applications only)	ng 🛛 YES 🗌 NO
F. This facility is located within 100 kilometers of the Rio Grande River and a copy of the application was sent to the International Boundary Water Commission (IBWC):	S YES NO
G. This facility is located within 100 kilometers of a federally-designated Class I area and a copy of the application was sent to the appropriate Federal Land Manager:	🗌 YES 🖾 NO
XIII. PROFESSIONAL ENGINEER (P.E.) SEAL	
Is the estimated capital cost of the project greater than \$2 million dollars?	YES 🗌 NO
If "YES," the application must be submitted under the seal of a Texas licensed Professional Engineer (P.E.)	•
XIV. DELINQUENT FEES AND PENALTIES	
Notice: This form will not be processed until all delinquent fees and/or penalties owed to the TCEQ or the General on behalf of the TCEQ are paid in accordance with the "Delinquent Fee and Penalty Protocol." Fo regarding Delinquent Fees and Penalties, go to the TCEQ Web site at: www.tceq.state.tx.us/agency/delin/in	Office of the Attorney r more information ndex.html.
XV. SIGNATURE	
The signature below confirms that I have knowledge of the facts included in this application and that these to the best of my knowledge and belief. I further state that to the best of my knowledge and belief, the projies made will not in any way violate any provision of the Texas Water Code (TWC), Chapter 7, Texas Clean amended, or any of the air quality rules and regulations of the Texas Commission on Environmental Quality governmental ordinance or resolution enacted pursuant to the TCAA. I further state that I understand my sit this application meets all applicable nonattainment, prevention of significant deterioration, or major source permitting requirements. I further state that I have read and understand TWC §§ 7.177-7.183, which defines OFFENSES for certain violations, including intentionally or knowingly making or causing to be made false representations in this application, and TWC § 7.187, pertaining to CRIMINAL PENALTIES.	facts are true and correct ect for which application Air Act (TCAA), as y or any local gnature indicates that of hazardous air pollutar s <u>CRIMINAL</u> material statements or TE: <u>5/14/2006</u>
Original Signature Required	<i>t</i> ' <i>t</i>
(

TCEQ Core Data Form

<u></u>	: ģ	ą,	- 2.1	-40	ंग	r Ói	En	à	00	n	-	÷.			. ÷	2	.2
84.) 1	:#:	: 3 -	dip	- 3, :	- 2	Ų	ĘŲ	ιu	Se	U	u ii	y a i	÷		- and	10	a de la composición de la comp
÷		ų.	÷Ę.:	÷ġ.	÷	ş.	$\widehat{\mathcal{M}}^{(i)}$	- <u>ê</u> -	: 8.5	÷		÷	-9		÷.	÷.	ŝ
÷.,	-311	14.1	aije	- 68-1	÷ģ.	A	n in te			$\cdot \hat{\otimes} \cdot z$	$(\dot{\eta})$	(\hat{e})	-49	\dot{v} :	1.57	22	· 12
a.:							2.		- 20			.d.,		di.	÷.,		- 21

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175.

<u>SI</u>	ECTION I: General Information
1	Reason for Submission (If other is checked please describe in space provided)
	New Permit, Registration or Authorization (Core Data Form should be submitted

New Per	mit, Regis	ration or Authorization (Core	Data Form sh	ould be s	ubmitted w	ith the program applica	ation)	
Renewa	I (Core De	ata Form should be submitted	with the renew	val form)		Other		
2. Attachme	nts	Describe Any Attachments	: (ex. Title V A	oplication,	Waste Trans	sporter Application, etc.)		
⊠Yes	□No	Prevention of Signific	ant Deterio	oration	Permit A	Application		1111.
3. Customer	Reference	e Number <i>(if issued)</i>	Follow this	link to sea	arch 4. R	Regulated Entity Refe	rence Number	(if issued)
CN			<u>Central</u>	Registry*	<u>R</u>	N		
SECTION	<u> II: Cı</u>	stomer Information	<u>n</u>					
5. Effective [Date for Cu	ustomer Information Update	s (mm/dd/yyy	ry) 5/	16/2008			
6. Customer	Role (Prop	oosed or Actual) - as it relates to	the <u>Regulated L</u>	Entity listed	d on this form	n. Please check only <u>one</u>	of the following:	
Owner		Operator	⊠ 0	wner & C	perator			
	nal License	ee 🔲 Responsible Party		oluntary (Cleanup Ap	plicant Other:		
7. General C	ustomer l	nformation						
New Cust	tomer		Update to Cu	stomer In	formation	Change	in Regulated Er	ntity Ownership
Change in	i Legal Nar	ne (Verifiable with the Texas S	Secretary of SI	ate)		No Char	nge**	
**If "No Cha	nge" and .	Section I is complete, skip to	o Section III –	Regulat	ed Entity Ir	<u>nformation.</u>		
8. Type of C	ustomer:	Corporation		ndividual		Sole Proprieto	rship- D.B.A	
City Gove	ernment	County Government	F					
Dther Go	vernment	General Partnership	Limited Partnership Other:					
9. Customer	Legal Na	ne (If an individual, print last nar	ne first: ex: Doe	, John)	<u>If new Cu</u> below	ustomer, enter previous	<u>Customer</u>	End Date:
Las Brisas	s Energy	Center, LLC						
	Mr. Jo	hn Upchurch						
10. Mailing	11011	Richmond Ave., Suite	350					
	City	Houston	State	TX	ZIP	77042	ZIP + 4	
11. Country	Mailing In	formation (if outside USA)			12. E-Mail A	ddress (if applicable)		
				j	ohnupch	urch@lasbrisase	nergy.com	
13. Telephor	14. Extensi	on or Co	de	15. Fax Num	ber (if applicabi	le)		
(281)63	36-2017					()	-	
16. Federal	Tax ID (9 dig	nits) == 17. TX State Franchise	e Tax ID (11 dig	its) 18	3. DUNS NI	Imber (if applicable) 19.	TX SOS Filing	Number (if applicable)
20. Number	of Employ	rees				21. Indepe	endently Owned	d and Operated?
⊠ 0-20 [21-100	101-250 251-500) 🗌 501 a	nd highei			Yes 🗌	🗌 No

SECTION III: Regulated Entity Information

22. General Regulated Entity Information (If 'New Regulated Entity" is selected below this form should be accompanied by a permit application)								
New Regulated Entity	Update to Regulated Entity Name	Update to Regulated Entity Information	No Change** (See below)					
	**If "NO CHANGE" is checked and Section I	is complete, skip to Section IV, Preparer Information.						
23. Regulated Entity Name (name of the site where the regulated action is taking place)								
Las Brisas Energy Co	enter, LLC							

24. Street Address	TBD												
of the Regulated													
(No P.O. Boxes)	City	Corpus Christi	State	TX	ZIP	78409	ZI	ZIP + 4					
	TBD												
25. Mailing Address:		· · ·											
	City	Corpus Christi	State	TX	ZIP	78409	ZI	P+4					
26. E-Mail Address:	joh	johnupchurch@lasbrisasenergy.com											
27. Telephone Numbe	ər		28. Extensio	on or Code	29.	Fax Number	(if applicable)						
(281)636-2017					() -							
30. Primary SIC Code (4 digits) 31. Secondary SIC Code (4 digits) 32. Primary NAICS Code (5 or 6 digits) 33. Secondary NAICS Code (5 or 6 digits)								S Code					
4939													
34. What is the Prima	ry Busin	ess of this entity?	(Please do not rej	peat the SIC or N	IAICS de	scription.)			- L/				
Electric Power G	enerati	on											
Q	uestions	s 34 – 37 address ge	ographic locatio	on. Please refe	er to the	e instructions	for applicabi	lity.					
35. Description to Physical Location:	On th Term	ne Joe Fulton Co inal	rridor bordeı	ring the wes	st side	of the Port	t of Corpus	Chris	ti Bulk				
36. Nearest City	1		County			State	١	Vearest	ZIP Code				
Corpus Christi			Nueces			TX		78409					
37. Latitude (N) In D		38. Longi	tude (N	/) In Decima	al:								
Degrees	Minutes Seconds			Degrees		Minutes		Seco	onds				
			·										
39. TCEQ Programs an		mbers Check all Program	s and write in the per and write it in. See	rmits/registration nu the Core Data Forr	umbers th m instructi	at will be affected	by the updates su guidance.	Ibmitted or	this form or the				
Dam Safety	, - ц. но gre	7 Districts	Edwards	ndustrial Hazar	dous Waste	Munic	cipal Solid Waste						

Dam Safety	Districts	Edwards Aquifer	Industrial Hazardous Waste	Municipal Solid Waste
A				
New Source Review – Air	OSSF 0	Petroleum Storage Tank	PWS	Sludge
		£		
Stormwater	⊠ Title V – Air	Tires	Used Oil	
Uvoluntary Cleanup	Waste Water	Wastewater Agriculture	U Water Rights	Other:

SECTION IV: Preparer Information

40. Name:	Shanon Di	Sorbo		41. Title:	Vice President
42. Telephone Number		43. Ext./Code	44. Fax Number	45. E-Mail	Address
(832)239-8018			(281)987-3500	disorbos	s@rpsgroup.com

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 9 and/or as required for the updates to the ID numbers identified in field 39.

(See the Core Data Form instructions for more information on who should sign this form.)

Company:	Las Brisas Energy Center, LLC	Job Title:	Managing Partne	r
Name(In Print) :	Mr. John Upchurch		Phone:	(281)636-2017
Signature:	1.1 /1/1		Date:	5/16/2008

Section 3 Area Map and Plot Plan

An area map is shown in Figure 3-1 showing 3,000-ft and one-mile distance markings. An overall plot plan of the facility is provided in Figure 3-2 showing the location of the facilities referenced in this submittal.

NOTE: Diesel tanks EPNs are not shown. There is one tank adjacent to each engine.

300 400F 0 20 40 60 80

Las Brisas Energy Center, LLC Corpus Christi, Nueces County, TX

> Figure 3-2 Plot Plan

14450 JFK Blvd., Suite 400 Houston, TX 77032 RPS JDC

Section 4 Process Description

The proposed facility will consist of four 300-megawatt (MW) (nominal output) circulating fluidized bed (CFB) boilers that will use petroleum coke (pet coke) as fuel. The steam produced from the boilers will be routed to two single turbine generator sets. The power generated will be sold to regional load serving entities for resale via the local electricity transmission and distribution grid. Material handling activities at the site include loading/unloading, transferring, and storage of pet coke, limestone, lime, sand, water treatment materials, and combustion by-products (fly and bottom ash). The following sections describe the different equipment and processes occurring at the site in further detail. A simplified process flow diagram is included at the end of this section as Figure 4-1.

4.1 Circulating Fluidized Bed (CFB) Boilers

The CFB boilers will be designed to fire solid fuel. LBEC proposes to use pet coke as fuel. During startup, natural gas and/or propane will be used prior to initiation of the pet coke. The exhaust flue gas from the first two CFB boilers (FIN: CFB-1 and CFB-2) will exit through a chimney that consists of two stacks (EPN: CFB1 and CFB2). Similarly, the exhaust flue gas from the other two CFB boilers (FIN: CFB-3 and CFB-4) will exit through a second chimney that also consists of two separate stacks (EPN: CFB3 and CFB4). CFB-1 and CFB-2 will fire pet coke producing steam to drive one of the single turbine-generator sets. CFB-3 and CFB-4 will also fire pet coke and will feed steam to a second single turbine-generator. Byproducts from the CFB boilers will include fly ash and bottom ash. Fly ash will be discharged from the CFB boilers and collected with the proposed fabric filters. Bottom ash will be collected and transferred to storage silos. Both the fly ash and bottom ash have potential commercial uses and will be shipped off-site for use or disposal.

The CFB boilers will use the best available control technology (BACT) to reduce emissions including limestone injection directly into the boilers to reduce sulfur dioxide emissions, selective non-catalytic reduction (SNCR) to reduce nitrogen oxide emissions, a polishing scrubber to further reduce acid gas emissions, and finally a fabric filter to reduce particulate and metals emissions.

4.2 Auxiliary Boilers

Two nominally rated 180 MMBtu/hr natural gas-fired auxiliary boilers (EPNs: AUX-BOIL1 and AUX-BOIL2) will be utilized during start-up and shutdown activities to provide auxiliary steam which may be required to stabilize the system. The boilers will be used during the commissioning phase of the project (prior to normal operation) as well as during normal operation. Each auxiliary boiler will not operate more than 2,500 hours per year. The boilers will be designed to include low-NO_x or staged combustion burners that will achieve NO_x emission levels of 0.035 lb/MMBTU.

4.3 **Propane Vaporizers**

Two nominally rated 16 MMBtu/hr propane vaporizers (EPNs: PROP-VAP1 and PROP-VAP2) will be utilized as a source of CFB start-up fuel in the event natural gas is not available. The vaporizers may be used during the commissioning phase of the project as well as during normal operation. Each vaporizer will not operate more than 2,500 hours per year. Further, the vaporizers will be equipped with conventional low NO_x burners designed to achieve NO_x emission levels of 0.1 lb/MMBTU.

4.4 Material Handling Facilities

Material handling facilities will be required for pet coke, limestone, lime, soda ash, sand, and combustion by-products (fly ash and bottom ash). The materials will be transported to the adjacent site operated by Las Brisas Terminal Company, LLC (LBTC). The materials from the LBTC stockpiles will be delivered to the LBEC material handling systems via conveyors, equipped with hoods to reduce the particulate emissions. Pet coke will be transferred into twenty storage silos. Each CFB boiler will be equipped with five pet coke silos. Each of the CFB boiler pet coke silo groups will be equipped with two fabric filters that will achieve 0.01 grains per dry standard cubic foot (EPNs: SILO-COKE1, SILO-COKE2, SILO-COKE3, SILO-COKE4, SILO-COKE5, SILO-COKE6, SILO-COKE7, and SILO-COKE8). Limestone will be transferred into one of four bunkers, located at each of the CFB boilers, equipped with a fabric filter that will achieve 0.01 grains per dry standard cubic foot (EPNs: SILO-LMST1, SILO-LMST3, and SILO-LMST4).

Lime will be utilized in the polishing scrubbers installed on each CFB boiler to reduce sulfuric acid and other acid emissions (i.e., hydrogen chloride and hydrogen fluoride) and for water treatment. Lime will be unloaded pneumatically from trucks into nine storage silos, each

equipped with a fabric filter that will achieve 0.01 grains per dry standard cubic foot (EPNs: SILO-LIME1, SILO-LIME2, SILO-LIME3, SILO-LIME4, SILO-LIME5, SILO-LIME6, SILO-LIME7, and SILO-LIME8) to provide a high level of particulate emission control.

Soda ash sill be utilized for water treatment and will be unloaded pneumatically from trucks into a storage silo equipped with a fabric filter that will achieve 0.01 grains per dry standard cubic foot (EPN: WT-SODA) to provide a high level of particulate emission control.

Sand will be utilized in the boilers to prevent agglomeration when firing pet coke. Sand will be unloaded pneumatically from trucks into four day-bins, each equipped with a fabric filter that will achieve 0.01 grains per dry standard cubic foot (EPNs: BIN-SAND1, BIN-SAND2, BIN-SAND3, and BIN-SAND4) to provide a high level of particulate emission control.

Fly ash and bottom ash will be generated as by-products of the CFB combustion process. Fly ash will be collected from each CFB fabric filter (baghouse) and bottom ash will be collected from the CFB beds. Each material will be separately conveyed pneumatically to four storage silos, each equipped with a fabric filter that will achieve 0.01 grains per dry standard cubic foot (EPNs: SILO-FA1, SILO-FA2, SILO-FA3, and SILO-FA4). The bottom ash will undergo a cooling step before transport to the silos. Each silo will have be equipped with a fabric filter that will achieve 0.01 grains per dry standard cubic foot (EPNs: SILO-BA1, SILO-BA2, SILO-BA3, and SILO-BA4) that provides a high level of particulate emission control. Fly ash and bottom ash collected in the silos will be loaded into trucks for off-site shipment utilizing a dust collection hood over each truck to minimize particulate emissions.

In order to reduce mercury emissions, LBEC may require the use of activated carbon injection to the exhaust gas. In the event that it necessary, LBEC will construct four activated carbon injection silos (one for each boiler). Activated carbon will be unloaded pneumatically from trucks into four silos, each equipped with a fabric filter that will achieve 0.01 grains per dry standard cubic foot (EPNs: SILO-ACI1, SILO-ACI2, SILO-ACI3m and SILO-ACI4) to provide a high level of particulate emission control.

The material handling activities located within the LBEC property boundary are included in this permit application while the material handling activities occurring prior to the custody transfer (i.e., active storage pile, inactive storage pile, conveyors, and etc.) will be authorized under a separate NSR authorization by LBTC.

4.5 Diesel-Fired Emergency Generators

Two nominally rated 1,600 kW diesel-fired emergency generators (EPNs: ENG-EG1 and ENG-EG2) will be installed at the site to provide electricity to the facility in case of power failure. The generators may be used during the commissioning phase of the project as well as during normal operation. Each generator will not operate more than 500 hours per year.

4.6 Diesel-Fired Fire Water Pumps

A nominally rated 360 HP diesel-fired pump (EPN: ENG-FWMAIN) will be installed at the site to provide water in the event of a fire. Four nominally rated 100 HP diesel-fired pumps (EPNs: ENG-FWB1, ENG-FWB2, ENG-FWB3, and ENG-FWB4) will be installed at the site to serve as fire water booster pumps at each of the CFB boilers. The pumps may be used during the commissioning phase of the project as well as during normal operation. Each pump will not operate more than 500 hours per year.

4.7 Diesel-Fired Boiler Feed Water Pumps

Four nominally rated 2,000 HP diesel-fired boiler feed water pumps (EPNs: ENG-BFWP1, ENG-BFWP2, ENG-BFWP3, and ENG-BFWP4) will be installed at the site to serve as emergency boiler feed water pumps at each of the CFB boilers. The pumps may be used during the commissioning phase of the project as well as during normal operation. Each pump will not operate more than 500 hours per year.

4.8 Storage Tanks

Anhydrous ammonia (NH₃) will be stored in pressurized tanks that will supply ammonia for the SNCR system installed on each CFB boiler. The tanks will not generate emissions during normal operations except for fugitive piping equipment emissions (EPNs: FUG-NH3A and FUG-NH3B). These ammonia tanks will be equipped with a vapor recovery system which will route all loading vapors back to the tank truck when transferring ammonia.

Propane, used in the propane vaporizers, will be stored in pressurized tanks. The tanks will not generate emissions during normal operations except for fugitive piping equipment emissions.

Tanks storing acid (EPN: TNK-ACID) and base (EPN: TNK-BASE) for water conditioning and pH control will be fixed roof tanks with atmospheric vents. Because of the very low vapor pressures of these chemicals, emissions from these tanks will be low.

Fixed roof tanks will be used to store diesel fuel for the emergency diesel-fired emergency generators, diesel-fired fire water pumps, and diesel-fired boiler feed water pumps (EPNs: TNK-ENG1, TNK-ENG2, TNK-FWMAIN, TNK-FWB1, TNK-FWB2, TNK-FWB3, TNK-FWB4, TNK-BFWP1, TNK-BFWP2, TNK-BFWP3, and TNK-BFWP4). Since the vapor pressure of diesel is very low, the VOC emissions associated with the storage tanks will be minimal.

4.9 Fugitive Emissions

As previously noted, this permit application includes piping components associated with the SNCR anhydrous ammonia storage tanks. In addition to the anhydrous ammonia piping components, additional piping components associated with natural gas (EPN: FUG-NG) and propane (EPN: FUG-PROP1 and FUG-PROP2) process equipment are included in this application. Ammonia fugitive emissions will be minimized by implementing an audio, visual, and olfactory (AVO) inspection program.

4.10 Cooling Towers

Raw water from the City of Corpus Christi will be supplied to the LBEC facility via pipeline. The site will require raw water for use as boiler feed water and cooling tower makeup water. The steam turbines will exhaust to a water-cooled surface condenser. Makeup water will be supplied to the condenser hot-well. Condenser cooling will be provided by a circulating water system from field-erected rectangular cooling towers (EPNs: CTWR1 and CTWR2). Particulate matter emissions will be minimized through the use of drift eliminators designed to achieve 0.0005%. Condenser hot-well pumps will pump condensate from the hot-well through low-pressure feed water heaters to the de-aerator.

Four boiler feed pumps will be provided for each of the circulating fluidized bed boiler. The boiler feed water pumps will pump feed water from the deaerator storage tank through two high pressure feed water heaters to the boilers' economizers.

Section 5 Emissions Summary

Emission factors and calculation methods are addressed in this section. Proposed emissions rates are summarized on TCEQ Table 1(a) found at the end of this section. Appendix A contains the emission factors and operations data used to calculate hourly and annual emissions from the proposed facilities.

5.1 Circulated Fluidized Bed (CFB) Boilers

The LBEC CFB boilers will utilize pet coke as the fuel. LBEC is proposing to utilize fuel assays from other CFB projects that are similar to the proposed facility. By comparing the fuel assays and evaluating the emission scenarios for each constituent, a conservative approach is used to estimate short-term and annual emissions for the proposed facility.

The combustion products include criteria pollutants such as nitrogen oxides (NO_X), sulfur dioxide (SO₂), carbon monoxide (CO), volatile organic compounds (VOC), particulate matter (PM), and particulate matter less than 10 microns in diameter (PM₁₀). Firing pet coke will also generate emissions of acidic gases such as sulfuric acid (H₂SO₄.), hydrochloric acid (HCl), or hydrofluoric acid (HF); and trace metals such as lead (Pb) and mercury (Hg). Because each CFB boiler will be equipped with selective non-catalytic reduction (SNCR) that utilizes ammonia to reduce NO_X emissions, ammonia (NH₃) slip emissions are also expected.

Short-term and annual emission factors for the CFB boilers were estimated using a combination of material balance equations based upon elemental composition of the solid fuel, US EPA's Compilation of Air Pollutant Emission Factors (AP-42, 5th Edition), information gathered from the BACT emission limits discussed in Section 6.0, and descriptions in the equipment manufacturer's guarantees. The emission factors for NO_x, SO₂, CO, VOC, PM/PM₁₀, H₂SO₄, HCI, HF, Pb, Hg, and NH₃ are summarized in Table A-1 of Appendix A. The methodology used to estimate emissions for each of these constituents is described below.

The CFB boilers will be started up by firing natural gas or vaporized propane until they reach about 30% of their full heat input load. During the startup operation, the control equipment (i.e., fabric filter and SNCR) will be by-passed until the flue gases reach temperature where these fabric filter systems and SNCR processes are effective. Based on experience at similar

facilities, LBEC expects that the natural gas or vaporized propane will be fired for about 7 hours and that the control equipment will be bypassed for approximately eight hours. Upon reaching 30% of the design heat rate, pet coke will be introduced and, within a short time period, all control equipment will be working at steady state conditions.

Emission calculation details for the CFB boilers are included in Appendix A on Table A-2 through A-9.

5.2 Auxiliary Boilers

Emission calculation details for the auxiliary boilers are included in Appendix A on Table A-18. Emissions for the combustion products were calculated using emission factors from Table 1.4.2 of EPA's AP-42 document for Natural Gas Combustion and equipment manufacturer guarantees.

5.3 Propane Vaporizers

Emission calculation details for the propane vaporizers are included in Appendix A on Table A-19. Emissions for the combustion products were calculated using emission factors from Table 1.5-1 of EPA's AP-42 document for Liquefied Petroleum Gas Combustion and equipment manufacturer guarantees.

5.4 Material Handling Facilities

LBEC will utilize LBTC for a significant portion of material handling activities. Figure 4-1 provides a general material handling process flow diagram that details which activities are included in this permit application. The following describes the material handling activities included in this permit application and the basis for the emission calculation estimates.

5.4.1 Pet Coke

Emission calculation details for pet coke handling activities included in this application are included in Appendix A on Table A-11. The table quantifies emissions for each activity associated with the LBEC operations (i.e., pet coke fabric filter vents). Emissions from the fabric filter vents were calculated based on an expected flow rate and an outlet grain loading rate of 0.01 gr/dscf.

5.4.2 Limestone

Emission calculation details for limestone handling activities included in this application are included in Appendix A on Table A-11. The table quantifies emissions for each activity

associated with the LBEC operations (i.e., limestone fabric filter vents). Emissions from the fabric filter vents were calculated based on an expected flow rate and an outlet grain loading rate of 0.01 gr/dscf.

5.4.3 Lime

Emission calculation details for lime handling activities included in this application are included in Appendix A on Table A-11. The table quantifies emissions for each activity associated with the LBEC operations (i.e., lime fabric filter vents). Emissions from the fabric filter vents were calculated based on an expected flow rate and an outlet grain loading rate of 0.01 gr/dscf.

5.4.4 Soda Ash

Emission calculation details for soda ash handling activities included in this application are included in Appendix A on Table A-11. The table quantifies emissions for each activity associated with the LBEC operations (i.e., soda ash fabric filter vents). Emissions from the fabric filter vent were calculated based on an expected flow rate and an outlet grain loading rate of 0.01 gr/dscf.

5.4.5 Sand

Emission calculation details for sand handling activities included in this application are included in Appendix A on Table A-11. The table quantifies emissions for each activity associated with the LBEC operations (i.e., sand fabric filter vents). Emissions from the fabric filter vents were calculated based on an expected flow rate and an outlet grain loading rate of 0.01 gr/dscf.

5.4.6 Fly Ash

Emission calculation details for fly ash handling activities included in this application are included in Appendix A on Table A-11. The table quantifies emissions for each activity associated with the LBEC operations (i.e., fly ash fabric filter vents). Emissions from the fabric filter vents were calculated based on an expected flow rate and an outlet grain loading rate of 0.01 gr/dscf.

5.4.7 Bottom Ash

Emission calculation details for bottom ash handling activities included in this application are included in Appendix A on Table A-11. The table quantifies emissions for each activity associated with the LBEC operations (i.e., bottom ash fabric filter vents). Emissions from the

fabric filter vents were calculated based on an expected flow rate and an outlet grain loading rate of 0.01 gr/dscf.

5.4.8 Activated Carbon

Emission calculation details for activated carbon handling activities included in this application are included in Appendix A on Table A-11. The table quantifies emissions for each activity associated with the LBEC operations (i.e., fabric filter vents). Emissions from the fabric filter vents were calculated based on an expected flow rate and an outlet grain loading rate of 0.01 gr/dscf.

5.5 Diesel-Fired Emergency Generators

Emission calculation details for diesel-fired emergency generators included in this application are included in Appendix A on Table A-13. Emissions of VOC, NO_X , CO, SO₂, and PM from the diesel-fired emergency generators are based emission factors noted in the calculations. Hourly emissions are calculated by multiplying the emission factor by the engine horsepower or heat input. Annual emissions are calculated by multiplying the hourly emissions by the number of operating hours per year.

5.6 Diesel-Fired Fire Water Pumps

Emission calculation details for diesel-fired fire water pumps and booster pumps included in this application are included in Appendix A on Table A-14 and A-15. Emissions of VOC, NO_x, CO, SO₂, and PM from the diesel-fired water and booster pumps are based emission factors noted in the calculations. Hourly emissions are calculated by multiplying the emission factor by the engine horsepower or heat input. Annual emissions are calculated by multiplying the hourly emissions by the number of operating hours per year.

5.7 Diesel-Fired Boiler Feed Water Pumps

Emission calculation details for diesel-fired boiler feed water pumps included in this application are included in Appendix A on Table A-16. Emissions of VOC, NO_X, CO, SO₂, and PM from the diesel-fired boiler feed water pumps are based emission factors noted in the calculations. Hourly emissions are calculated by multiplying the emission factor by the engine horsepower or heat input. Annual emissions are calculated by multiplying the hourly emissions by the number of operating hours per year.

5.8 Storage Tanks

Emission calculation details for storage tanks included in this application are included in Appendix A on Table A-17. For storage tanks, annual storage tank emissions were estimated using the emission calculation methods in AP-42 Section 7. Per the TCEQ's *Technical Guidance Package for Chemical Sources: Storage Tanks, February 2001*, the short-term emission calculations for the fixed roof tanks were based on the following equation:

 $L_{MAX} = L_W * F_{RM} / (N * T_{CG})$

Where:

L_{MAX} = maximum short-term emission rate, lbs/hr

L_w = working loss calculated using AP-42, Chapter 7 at maximum liquid surface temperature, lbs/yr (Note: units are lbs/yr not lbs/hr. L_w must be calculated using a turnover factor, K_N, of 1).

 F_{RM} = maximum filling rate, gals/hr

N = number of turnovers per year

T_{CG} = tank capacity, gals

5.9 Fugitive Emissions

Emission calculation details for the fugitive emissions included in this application are included in Appendix A on Table A-10. Fugitive emission rates of ammonia (NH₃) and VOC from piping components and ancillary equipment associated with the SCNR and fuel systems were estimated using the methods outlined in the TCEQ's *Air Permit Technical Guidance for Chemical Sources: Equipment Leak Fugitives, October 2000.*

Each fugitive component was classified first by equipment type (i.e., valve, pump, flange, etc.) and then by material type (i.e., gas/vapor, light liquid, and heavy liquid). An uncontrolled emission rate was obtained by multiplying the number of fugitive components of a particular equipment/material type by the appropriate emission factor. To obtain controlled fugitive emission rates, the uncontrolled rates were multiplied by a control factor, which was determined by the leak detection and repair (LDAR) program employed at the facility.

5.10 Cooling Towers

Emission calculation details for the cooling towers included in this application are included in Appendix A on Table A-12. PM emissions from cooling towers were estimated using the drift

loss rate (0.0005%) and data for total dissolved solids from potential water supplies and cycles of concentration.

The PM_{10} emission rate from the was calculated using a method that assumes that each droplet leaving the tower forms one solid particulate as the water evaporates. Based on this assumption, the mass of the solids in the droplet must equal the mass of solids in the solid particle. The equation shown on Table A-12 was used to calculate the diameter of the solid particle for each water droplet diameter. The solid particle sizes were calculated for a typical water droplet size distribution. Using straight-line interpolation for a particle size of 10 µm in diameter, the percent of mass emissions less than 10 µm is determined from a typical cooling tower particle size distribution. This factor was applied to the total particulate emissions to estimate the PM₁₀ emissions.

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY Table 1(a) Emission Point Summary

RN Number: TBD Permit Number: TBD

Company Name: Las Brisas Energy Center, LLC

Review of application	ns and issuance of pe	rmits will be expedited by supplying all necessary	ary information requested on this Ta	able.											
		AIR CONTAM				EMISSION POINT DISCHARGE PARAMETERS A UTM Coordinate of Emission Source									
	1. Em	ission Point	2. Component or Air Contaminant Name	3. Air Conta	minant Emission Rate	4. UTWI Coordinates of Emission Point			5. Height	6. Stack Exit Data			7. Fugitives		ives
EPN	FIN	NAME	-	Pounds per Hour	ТРҮ	Zone	East	North	Above Ground	Diameter (Feet)	Velocity (fps)	Temp (°F)	Length (ft)	Width (ft)	Axis Degrees
(A)	(B)	(C)	NO	(A)	(B)		(Meters)	(Meters)	(Feet)	(A)	(B)	(C)	(A)	(B)	(C)
			NO _x	308	944	14	650,089	3,078,160	TBD	45.0	16.5	175.0	┥──	<u> </u>	
CFB1&2	CFB-1	CFB Boiler 1	SO ₂	714	2,620										-
			СО	462	2,024								\perp		
			VOC	15.4	67.5										
			PM ₁₀	182	702										
			H ₂ SO ₄	114	499										
			NH ₃	16.0	35.1										
			Hg	0.01	0.04										
			HCI	13.65	11.97										
			HF	1.18	1.10										
			Pb	0.04	0.03										
			SO ₂ (startup)	4,910.48											
			HF (startup)	11.81											
			H ₂ SO ₄ (startup)	315.74											
			HCI (startup)	136.48											
			NO _x	308	944				Combined Stack						
CFB1&2	CFB-2	CFB Boiler 2	SO ₂	714	2,620										
			СО	462	2,024										
			VOC	15.4	67.5										
			PM ₁₀	182	702										
			H ₂ SO ₄	114	499										
			NH ₃	16.0	35.1										
			Hg	0.01	0.04									1	
			HCI	13.65	11.97										
			HF	1.18	1.10								1		
			Pb	0.04	0.03										
			SO ₂ (startup)	4,910.48											
			HF (startup)	11.81											
			H ₂ SO ₄ (startup)	315.74											
			HCI (startup)	136.48									1		

Date: 5/19/2008
5/19/2008

Permit Number: TBD RN Number: TBD Date:

Company Name: Las Brisas Energy Center, LLC

Review of applicatio	ns and issuance of pe	rmits will be expedited by supplying all necessa AIR CONTAN	ary information requested on this T	able.					EMISSI	ON POINT DISCHA	RGE PARAMETERS				
			2. Component or Air			4. U	TM Coordina	es of Emission		1	Source				
	1. Em	ission Point	Contaminant Name	3. Air Contai	minant Emission Rate		Poin	t	5. Height Above	Diameter	6. Stack Exit Data	Temn	7 Length	. Fugiti Width	ves A vis
EPN (A)	FIN (B)	NAME (C)	-	Pounds per Hour (A)	TPY (B)	Zone	East (Meters)	North (Meters)	Ground (Feet)	(Feet) (A)	(fps) (B)	(°F) (C)	(ft) (A)	(ft) (B)	Degrees (C)
			NO _x	308	944	14	649,950	3,078,195	TBD	45.0	16.5	175.0			
CFB3&4	CFB-3	CFB Boiler 3	SO ₂	714	2,620										
			СО	462	2,024										
			VOC	15.4	67.5										
			PM ₁₀	182	702										
			H ₂ SO ₄	114	499										
			NH ₃	16.0	35.1										
			Hg	0.01	0.04										
			HCI	13.65	11.97										
			HF	1.18	1.10										
			Pb	0.04	0.03										
			SO ₂ (startup)	4,910.48											
			HF (startup)	11.81											
			H ₂ SO ₄ (startup)	315.74											
			HCI (startup)	136.48											
			NO _x	308	944				Con	nbined Stack	ĸ				
CFB3&4	CFB-4	CFB Boiler 4	SO ₂	714	2,620										
			СО	462	2,024										
			VOC	15.4	67.5										
			PM ₁₀	182	702										
			H ₂ SO ₄	114	499										
			NH ₃	16.0	35.1										
			Hg	0.01	0.04										
			HCI	13.65	11.97										
			HF	1.18	1.10										
			Pb	0.04	0.03										
			SO ₂ (startup)	4,910.48											
			HF (startup)	11.81											
			H ₂ SO ₄ (startup)	315.74											
			HCI (startup)	136.48											

Permit Number:	TBD	RN Number:	TBD	Date:	5/19/2008
Commony Norma	Los Prisos Enormy Conton LLC				

Company Name: Las Brisas Energy Center, LLC

Review of applications and issuance of permits will be expedited by supplying all necessary information requested on this Table. AIR CONTAMINANT DATA EMISSION POINT DISCHARGE PARAMETERS Source 2. Component or Air 4. UTM Coordinates of Emission 6. Stack Exit Data 1. Emission Point 5. Height 3. Air Contaminant Emission Rate 7. Fugitives **Contaminant Name** Point Length Width Above Diameter Velocity Temp Axis EPN FIN NAME Pounds per Hour TPY East North Ground (Feet) (fps) (°F) (ft) (ft) Degrees Zone (A) **(B)** (C) (A) **(B)** (Meters) (Meters) (Feet) (A) **(B)** (C) (A) **(B)** (C) AUX-BOIL1 Auxiliary Boiler for Units 1 PM10 14 TBD TBD TBD TBD AUX-BOIL1 1.38 1.72 650,184 3,078,257 & 2 voc 1.00 1.25 NOx 6.30 7.88 со 15.03 18.79 SO2 0.12 0.15 AUX-BOIL2 AUX-BOIL2 **PM10** 1.38 1.72 14 650,045 3,078,291 TBD TBD TBD TBD Auxiliary Boiler for Units 3 & 4 VOC 1.00 1.25 NOx 6.30 7.88 со 15.03 18.79 SO2 0.12 0.15 **PM10** PROP-VAP1 PROP-VAP1 0.11 0.13 14 650,167 3,078,237 TBD TBD TBD TBD **Propane Vaporizer for** Units 1 & 2 voc 0.05 0.06 NOx 1.60 2.00 со 1.29 1.61 **PM10** PROP-VAP2 PROP-VAP2 0.11 0.13 14 650,031 3,078,271 TBD TBD TBD TBD **Propane Vaporizer for** Units 3 & 4 VOC 0.05 0.06 NOx 1.60 2.00 со 1.29 1.61 SILO-FA1 SILO-FA1 Fly Ash Silo No. 1 **PM/PM**₁₀ 0.63 2.74 14 650,166 3,078,178 TBD TBD TBD amb. SILO-FA2 SILO-FA2 Fly Ash Silo No. 2 **PM/PM**₁₀ 0.63 2.74 14 650,146 3,078,166 TBD TBD TBD amb. PM/PM₁₀ SILO-FA3 SILO-FA3 Fly Ash Silo No. 3 0.63 2.74 14 650,026 3,078,211 TBD TBD TBD amb.

5/19/2008

Permit Number: TBD

Company Name: Las Brisas Energy Center, LLC

RN Number: TBD

Date:

Review of application	ns and issuance of pe	ermits will be expedited by supplying all necessary AIR CONTAM	y information requested on this T INANT DATA		EMISSION POINT DISCHARGE PARAMETERS										
			2 Component or Air			4 II	FM Coordina	tes of Emission		-	Source				
	1. Em	nission Point	Contaminant Name	3. Air Conta	minant Emission Rate	0	Poin	t	5. Height		6. Stack Exit Data	_	7	/. Fugiti	ives
EPN (A)	FIN (B)	NAME (C)		Pounds per Hour (A)	TPY (B)	Zone	East (Meters)	North (Meters)	Above Ground (Feet)	(Feet) (A)	(fps) (B)	(°F) (C)	(ft) (A)	(ft) (B)	Axis Degrees (C)
SILO-FA4	SILO-FA4	Fly Ash Silo No. 4	PM/PM ₁₀	0.63	2.74	14	650,007	3,078,199	TBD	TBD	TBD	amb.			
SILO-BA1	SILO-BA1	Bottom Ash Silo No. 1	PM/PM ₁₀	0.47	2.07	14	650,126	3,078,277	TBD	TBD	TBD	amb.			
SILO-BA2	SILO-BA2	Bottom Ash Silo No. 2	PM/PM ₁₀	0.47	2.07	14	650,077	3,078,289	TBD	TBD	TBD	amb.			
SILO-BA3	SILO-BA3	Bottom Ash Silo No. 3	PM/PM ₁₀	0.47	2.07	14	649,987	3,078,311	TBD	TBD	TBD	amb.			
SILO-BA4	SILO-BA4	Bottom Ash Silo No. 4	PM/PM ₁₀	0.47	2.07	14	649,938	3,078,324	TBD	TBD	TBD	amb.			
SILO-COKE1	SILO-COKE1	Coke Silo No.1	PM/PM ₁₀	2.83	8.18	14	650,166	3,078,285	TBD	TBD	TBD	amb.			
SILO-COKE2	SILO-COKE2	Coke Silo No.2	PM/PM ₁₀	2.83	8.18	14	650,132	3,078,293	TBD	TBD	TBD	amb.			
SILO-COKE3	SILO-COKE3	Coke Silo No.3	PM/PM ₁₀	2.83	8.18	14	650,114	3,078,297	TBD	TBD	TBD	amb.			
SILO-COKE4	SILO-COKE4	Coke Silo No.4	PM/PM ₁₀	2.83	8.18	14	650,081	3,078,305	TBD	TBD	TBD	amb.			
SILO-COKE5	SILO-COKE5	Coke Silo No.5	PM/PM ₁₀	2.83	8.18	14	650,027	3,078,318	TBD	TBD	TBD	amb.			
SILO-COKE6	SILO-COKE6	Coke Silo No.6	PM/PM ₁₀	2.83	8.18	14	649,994	3,078,327	TBD	TBD	TBD	amb.			
SILO-COKE7	SILO-COKE7	Coke Silo No.7	PM/PM ₁₀	2.83	8.18	14	649,976	3,078,331	TBD	TBD	TBD	amb.			
SILO-COKE8	SILO-COKE8	Coke Silo No.8	PM/PM ₁₀	2.83	8.18	14	649,943	3,078,339	TBD	TBD	TBD	amb.			
SILO-LMST1	SILO-LMST1	Limestone Bunker No. 1	PM/PM ₁₀	0.07	0.10	14	650,174	3,078,280	TBD	TBD	TBD	amb.			
SILO-LMST2	SILO-LMST2	Limestone Bunker No. 2	PM/PM ₁₀	0.07	0.10	14	650,122	3,078,293	TBD	TBD	TBD	amb.			
SILO-LMST3	SILO-LMST3	Limestone Bunker No. 3	PM/PM ₁₀	0.07	0.10	14	650,034	3,078,314	TBD	TBD	TBD	amb.			
SILO-LMST4	SILO-LMST4	Limestone Bunker No. 4	PM/PM ₁₀	0.07	0.10	14	649,984	3,078,327	TBD	TBD	TBD	amb.			
SILO-ACI1	SILO-ACI1	Carbon for ACI Silo No. 1	PM/PM ₁₀	0.14	0.21	15	650,144	3,078,229	TBD	TBD	TBD	amb.			
SILO-ACI2	SILO-ACI2	Carbon for ACI Silo No. 2	PM/PM ₁₀	0.14	0.21	16	650,095	3,078,242	TBD	TBD	TBD	amb.			
SILO-ACI3	SILO-ACI3	Carbon for ACI Silo No. 3	PM/PM ₁₀	0.14	0.21	17	650,006	3,078,263	TBD	TBD	TBD	amb.			
SILO-ACI4	SILO-ACI4	Carbon for ACI Silo No. 4	PM/PM ₁₀	0.14	0.21	18	651,956	3,078,275	TBD	TBD	TBD	amb.			
SILO-LIME1	SILO-LIME1	Lime Silo No. 1	PM/PM ₁₀	0.14	0.21	14	650,142	3,078,220	TBD	TBD	TBD	amb.			
SILO-LIME2	SILO-LIME2	Lime Silo No. 2	PM/PM ₁₀	0.14	0.21	14	650,142	3,078,220	TBD	TBD	TBD	amb.			
SILO-LIME3	SILO-LIME3	Lime Silo No. 3	PM/PM ₁₀	0.14	0.21	14	650,094	3,078,232	TBD	TBD	TBD	amb.			
SILO-LIME4	SILO-LIME4	Lime Silo No. 4	PM/PM ₁₀	0.14	0.21	14	650,094	3,078,232	TBD	TBD	TBD	amb.			
SILO-LIME5	SILO-LIME5	Lime Silo No. 5	PM/PM ₁₀	0.14	0.21	14	650,004	3,078,254	TBD	TBD	TBD	amb.			
SILO-LIME6	SILO-LIME6	Lime Silo No. 6	PM/PM ₁₀	0.14	0.21	14	650,004	3,078,254	TBD	TBD	TBD	amb.			

5/19/2008

Permit Number: TBD Company Name: Las Brisas Energy Center, LLC

inputy ratio Dista Dietg, Center, DDC

RN Number: TBD

Date:

Review of application	ns and issuance of pe	ermits will be expedited by supplying all necessary	information requested on this T	able.					EMISSIO	N DOINT DISCULA					
		AIR CONTAM							EMISSIO	N POINT DISCHAI	Source	<u> </u>			_
	1. En	nission Point	2. Component or Air Contaminant Name	3. Air Contai	minant Emission Rate	4. 01	M Coordinat	es of Emission	5. Height		6. Stack Exit Data	-	7	. Fugitiv	ves
			Containing Func				10		Above	Diameter	Velocity	Temp	Length	Width	Axis
EPN (A)	FIN (B)	NAME (C)		Pounds per Hour	TPY (B)	Zone	East (Meters)	North (Meters)	Ground (Feet)	(Feet)	(fps) (B)	(°F) (C)	(ft) (A)	(ft) (B)	Degrees (C)
SILO-LIME7	SILO-LIME7	Lime Silo No. 7	PM/PM ₁₀	0.14	0.21	14	649,955	3,078,266	TBD	TBD	TBD	amb.	(-)	(=)	(0)
SILO-LIME8	SILO-LIME8	Lime Silo No. 8	PM/PM ₁₀	0.14	0.21	14	649,955	3,078,266	TBD	TBD	TBD	amb.			
BIN-SAND1	BIN-SAND1	Unit 1 Sand Day Bin	PM/PM ₁₀	0.04	0.06	14	650,175	3,078,285	TBD	TBD	TBD	amb.			
BIN-SAND2	BIN-SAND2	Unit 2 Sand Day Bin	PM/PM ₁₀	0.04	0.06	14	650,124	3,078,298	TBD	TBD	TBD	amb.			
BIN-SAND3	BIN-SAND3	Unit 3 Sand Day Bin	PM/PM ₁₀	0.04	0.06	14	650,036	3,078,319	TBD	TBD	TBD	amb.			
BIN-SAND4	BIN-SAND4	Unit 4 Sand Day Bin	PM/PM ₁₀	0.04	0.06	14	649,985	3,078,332	TBD	TBD	TBD	amb.			
WT-LIME	WT-LIME	Water Treatment Lime Silo	PM/PM ₁₀	0.09	0.13	14	649,852	3,078,352	TBD	TBD	TBD	amb.			
WT-SODA	WT-SODA	Water Treatment Soda Ash Silo	PM/PM ₁₀	0.09	0.13	14	649,849	3,078,343	TBD	TBD	TBD	amb.			
CTWP1	CTWP1	Cooling Tower #1	РМ	12.01	52.60	14	649,848	3,078,495	TBD	0.003	0.003	70			
CIWRI	CIWRI		PM ₁₀	0.29	1.29										
CTWR2	CTWR2	Cooling Tower #2	РМ	12.01	52.60	14	649,786	3,078,256	TBD	0.003	0.003	70			
011112			PM ₁₀	0.29	1.29										
															ļ
FNG-EG1	ENG-EG1	Diesel-Fired Emergency	NO _x	24.30	6.10	14	650,062	3,078,387	12	0.28	135	845			<u> </u>
		Generator 1	со	13.30	3.30										L
			PM ₁₀	0.61	0.15										ļ
			voc	1.46	0.37										
			SO ₂	0.46	0.12										
			H₂SO₄	0.04	0.009										

TBD RN Number: TBD 5/19/2008 Date: Permit Number: Company Name: Las Brisas Energy Center, LLC

Review of applications and issuance of permits will be expedited by supplying all necessary information requested on this Table. AIR CONTAMINANT DATA EMISSION POINT DISCHARGE PARAMETERS Source 4. UTM Coordinates of Emission 2. Component or Air 1. Emission Point 6. Stack Exit Data 3. Air Contaminant Emission Rate 5. Height 7. Fugitives Contaminant Name Point Above Diameter Velocity Temp Length Width Axis EPN FIN NAME Pounds per Hour TPY East North Ground (Feet) (fps) (°F) (ft) (ft) Degrees Zone (A) **(B)** (C) (A) **(B)** (Meters) (Meters) (Feet) (A) **(B)** (C) (A) **(B)** (C) NO_x 12 845 24.30 6.10 14 650,201 3,078,353 0.28 135 **Diesel-Fired Emergency** ENG-EG2 ENG-EG2 Generator 2 со 13.30 3.30 PM_{10} 0.61 0.15 voc 1.46 0.37 SO₂ 0.46 0.12 H₂SO₄ 0.04 0.009 NO_x 2.38 0.60 14 649,805 3,078,368 12 0.28 135 845 ENG-ENG-Main Diesel-Fired Fire FWMAIN FWMAIN Water Pump CO 2.06 0.52 PM_{10} 0.12 0.03 VOC 0.89 0.22 SO₂ 0.07 0.02 H₂SO₄ 0.01 0.002 NO_x 0.66 0.17 14 650,162 3,078,275 12 0.28 90 845 ENG-**Diesel-Fired Fire Water** ENG-FWB1 FWB1 **Booster Pump 1** CO 0.57 0.14 **PM**₁₀ 0.03 0.01 VOC 0.25 0.06 SO₂ 0.02 0.01 H_2SO_4 0.002 0.001 NO_x 0.66 0.17 14 650,078 3,078,296 12 0.28 90 845 ENG-**Diesel-Fired Fire Water** ENG-FWB2 FWB2 Booster Pump 2 со 0.57 0.14 **PM**₁₀ 0.03 0.01 voc 0.25 0.06 SO₂ 0.02 0.01 H₂SO₄ 0.002 0.001

RN Number: TBD Permit Number: TBD Date: Company Name: Las Brisas Energy Center, LLC

Review of application	is and issuance of po	ermits will be expedited by supplying all necessar AIR CONTAM	y information requested on this T INANT DATA		EMISSION POINT DISCHARGE PARAMETERS										
			2. Component or Air			4. U	TM Coordina	tes of Emission			Source				
	1. En	nission Point	Contaminant Name	3. Air Contai	minant Emission Rate		Poin	t	5. Height Above	Diameter	6. Stack Exit Data Velocity	Temp	Length	7. Fugiti	ives Axis
EPN (A)	FIN (B)	NAME (C)		Pounds per Hour (A)	TPY (B)	Zone	East (Meters)	North (Meters)	Ground (Feet)	(Feet) (A)	(fps) (B)	(°F) (C)	(ft) (A)	(ft) (B)	Degrees (C)
ENG-EWB3	ENG-	Diesel-Fired Fire Water	NO _x	0.66	0.17	14	650,023	3,078,309	12	0.28	90	845			
	FWB3	Booster Pump 3	со	0.57	0.14										
			PM ₁₀	0.03	0.01										
			voc	0.25	0.06										
			SO ₂	0.02	0.01										
			H ₂ SO ₄	0.002	0.001										
														<u> </u>	
ENG-FWB4	ENG-	Diesel-Fired Fire Water	NO _x	0.66	0.17	14	649,940	3,078,330	12	0.28	90	845	<u> </u>		
	FWD4	Booster Pullip 4	СО	0.57	0.14								<u> </u>		
			PM ₁₀	0.03	0.01								<u> </u>		<u> </u>
			VOC	0.25	0.06								<u> </u>		<u> </u>
			SO ₂	0.02	0.01								\square		<u> </u>
			H ₂ SO ₄	0.002	0.001										
			NO	10.00										<u> </u>	
ENG- BEWP1	ENG- BFWP1	Diesel-Fired Boiler Feed Water Pump 1	NO _x	13.23	3.31	14	650,125	3,078,306	30	1.67	90	845		──	
5	2			11.46	2.87									──	
				0.66	0.17									──	
			VOC	4.94	1.24								<u> </u>	<u> </u>	
				0.40	0.10									──	
			п ₂ 50 ₄	0.031	0.008								<u> </u>		
			NO	42.00	2.24	44	050.405	0.070.000		4.07		0.45	<u> </u>	-	
ENG- BFWP2	ENG- BFWP2	Diesel-Fired Boiler Feed Water Pump 2	NO _x	13.23	3.31	14	650,125	3,078,306	30	1.67	90	845	<u> </u>		
51 11 2	511112		0	11.46	2.87								<u> </u>	<u> </u>	
			PM ₁₀	0.66	0.17										
			VOC	4.94	1.24									──	
			SO ₂	0.40	0.10								_	_	┨────
			H ₂ SO ₄	0.031	0.008								_	\vdash	<u> </u>
						1									

5/19/2008

RN Number: TBD Permit Number: TBD Date: 5/19/2008 Company Name: Las Brisas Energy Center, LLC

Review of application	ns and issuance of pe	rmits will be expedited by supplying all necessar AIR CONTAM	y information requested on this T INANT DATA	able.		EMISSION POINT DISCHARGE PARAMETERS									
	1 Em	issian Daint	2. Component or Air	2 Ain Contor	ninant Emission Data	4. U	TM Coordinat	es of Emission	5 Height		Source			E	
	I. Em	ussion Point	Contaminant Name	3. Air Contai	minant Emission Rate		Point	t	5. Height Above	Diameter	6. Stack Exit Data Velocity	Temp	7 Length	. Fugiti Width	ves Axis
EPN (A)	FIN (B)	NAME (C)		Pounds per Hour (A)	TPY (B)	Zone	East (Meters)	North (Meters)	Ground (Feet)	(Feet) (A)	(fps) (B)	(°F) (C)	(ft) (A)	(ft) (B)	Degrees (C)
ENG-	ENG-	Diesel-Fired Boiler Feed	NO _x	13.23	3.31	14	649,986	3,078,341	30	1.67	90	845			
BFWP3	BFWP3	Water Pump 3	со	11.46	2.87										
			PM ₁₀	0.66	0.17										
			voc	4.94	1.24										
			SO ₂	0.40	0.10										
			H₂SO₄	0.031	0.008										
ENG-	ENG-	Diesel-Fired Boiler Feed	NO _x	13.23	3.31	14	649,986	3,078,341	30	1.67	90	845			
BFWP4	BFWP4	Water Pump 4	со	11.46	2.87										
			PM ₁₀	0.66	0.17										
			VOC	4.94	1.24										
			SO ₂	0.40	0.10										
			H₂SO₄	0.031	0.008										
TNK- FWMAIN	TNK- FWMAIN	Diesel Tank for Main Diesel-Fired Fire Water Pump	voc	0.0104	0.0002	14	649,805	3,078,368	4	0.003	0.003	amb.			
TNK-EG1	TNK-EG1	Diesel Tank for Emergency Generator 1	VOC	0.0104	0.0001	14	650,062	3,078,387	4	0.003	0.003	amb.			
TNK-EG2	TNK-EG2	Diesel Tank for Emergency Generator 2	VOC	0.0104	0.0001	14	650,201	3,078,353	4	0.003	0.003	amb.			
TNK-FWB1	TNK-FWB1	Diesel Tank for Fire Water Booster Pump 1	VOC	0.0104	0.0003	14	650,162	3,078,275	4	0.003	0.003	amb.			
TNK-FWB2	TNK-FWB2	Diesel Tank for Fire Water Booster Pump 2	voc	0.0104	0.0003	14	650,078	3,078,296	4	0.003	0.003	amb.			
TNK-FWB3	TNK-FWB3	Diesel Tank for Fire Water Booster Pump 3	VOC	0.0104	0.0003	14	650,023	3,078,309	4	0.003	0.003	amb.			
TNK-FWB4	TNK-FWB4	Diesel Tank for Fire Water Booster Pump 4	VOC	0.0104	0.0003	14	649,940	3,078,330	4	0.003	0.003	amb.			
TNK- BFWP1	TNK- BFWP1	Diesel Tank for Boiler Feed Water Pump 1	VOC	0.0104	0.0004	14	650,125	3,078,306	4	0.003	0.003	amb.			
TNK- BFWP2	TNK- BFWP2	Diesel Tank for Boiler Feed Water Pump 2	VOC	0.0104	0.0004	14	650,125	3,078,306	4	0.003	0.003	amb.			
TNK- BFWP3	TNK- BFWP3	Diesel Tank for Boiler Feed Water Pump 3	VOC	0.0104	0.0004	14	649,986	3,078,341	4	0.003	0.003	amb.			

5/19/2008

Date:

Permit Number: TBD RN Number: TBD Company Name: Las Brisas Energy Center, LLC

Review of applications and issuance of permits will be expedited by supplying all necessary information requested on this Table.

	AIR CONTAMINANT DATA							EMISSION POINT DISCHARGE PARAMETERS									
			2 Component or Air			4 117	M Coordinat	tee of Emission			Source						
	1. Emi	ission Point	2. Component of An Contaminant Name	3. Air Contai	minant Emission Rate	4. 01	Point	t	5. Height		6. Stack Exit Data		7. Fugitives		ves		
			Containing Faint				1 0111		Above	Diameter	Velocity	Temp	Length	Width	Axis		
EPN	FIN	NAME		Pounds per Hour	TPY	Zone	East	North	Ground	(Feet)	(fps)	(°F)	(ft)	(ft)	Degrees		
(A)	(B)	(C)		(A)	(B)	Zone	(Meters)	(Meters)	(Feet)	(A)	(B)	(C)	(A)	(B)	(C)		
TNK-	TNK-	Diesel Tank for Boiler	Voc	0.0404	0.0004		C 40 00C	2 070 244		0.000	0.000						
BFWP4	BFWP4	Feed Water Pump 4	VUC	0.0104	0.0004	14	649,986	3,078,341	4	0.003	0.003	amb.					
		•															
TNK-ACID	TNK-ACID	Acid Storage Tank	H2SO4	0.1616	0.0032	14	649,858	3,078,327	16	0.003	0.003	amb.					
TNK-BASE	TNK-BASE	Base Storage Tank	NaOH	0.0688	0.0014	14	649,859	3,078,333	16	0.003	0.003	amb.					
		_															
		Eugitivos: Ammonia	NH.	0.10	0.45	14	650 103	3 078 214	2	0.002	0.002	amb					
FUG-NH3A	FUG-NH3A	Fugitives. Animonia	1113	0.10	0.45	14	030,103	3,070,214	3	0.005	0.005	anno.					
			NU		A 15												
FUG-NH3B	FUG-NH3B	Fugitives: Ammonia	NП3	0.10	0.45	14	649,963	3,078,248	3	0.003	0.003	amb.					
									_								
FUG-NG	FUG-NG	Fugitives: Natural Gas	VOC	0.19	0.84	14	650,067	3,078,321	3	0.003	0.003	amb.					
FUG-	FUG-																
DBOD1	BBOB1	Fugitives: Propane	VOC	0.41	1.80	14	650,167	3,078,237	3	0.003	0.003	amb.					
FROFI															┝────┥		
FUG-	FUG-	Fugitives: Propane	VOC	0.41	1.80	14	650.031	3.078.271	3	0.003	0.003	amb.					
PROP2	PROP2	- agiaroor ropano		••••			500,001	5,010,271	Ŭ	0.000	01000	4.110					

FIN = Facility Identification Number

TCEQ-10153 (Revised 06-30-03)

Table 1(a)-Emission Point Summary - These forms are for use by sources subject to the New Source Review Program and may be revised [ANSRG95A:7026.v3

Section 6 BACT Analysis

The TCEQ regulations in 30 TAC Chapter 116 and federal PSD regulations require that Best Available Control Technology (BACT) be applied to minimize the emissions of pollutants from new and modified facilities. The federal PSD requirement is applicable to emissions of pollutants subject to review, which include NO_x, Ozone (VOC), CO, SO₂, H₂SO₄, and PM/PM₁₀ for the Las Brisas Energy Center. This section describes the control technologies and corresponding level of emissions proposed to meet these BACT requirements for the project. Regardless of whether the pollutant triggers PSD, BACT as required under 30 TAC Chapter 116 applies to new facilities or sources of emissions.

BACT is determined on a case-by-case basis taking into consideration technical practicability and economic reasonableness. For PSD BACT requirements, energy and environmental impacts should also be considered. TCEQ uses a three-tiered BACT review process. Control technology alternatives are identified for each new and modified source of pollutants based on knowledge of the applicant's particular industry and previous regulatory decisions for other identical or similar sources. In the first tier, controls accepted as BACT in recent permit reviews for the same process/industry are approved as BACT. The second tier considers controls that have been accepted as BACT in recent permits for similar streams in a different process or industry. The third tier of review is a detailed technical and economic analysis of all control options available for the process being reviewed. The three-tiered approach was followed in the selection of BACT for the subject facilities.

Because the Las Brisas Energy Center is a new plant, all emission sources at the plant are subject to BACT review. This included the CFB boilers, materials handling facilities, reciprocating engines associated with the emergency generators and fire water pumps, storage tanks, fugitive emissions, and cooling towers. TCEQ has well-defined BACT requirements for each of these types of facilities based on the first tier of the three-tiered BACT determination process. Therefore, the BACT analysis was not required to go beyond the first tier. The LBEC electric generation facility will meet or exceed the BACT limits established in the most recent CFB permits issued in Texas, namely Flexible Permit No. 76044 and PSD-TX-1053 issued to

Formosa Plastics and Permit No. 45586 and PSD-TX-1055 issued to Calhoun County Navigation District.

TCEQ has published guidance documents containing the BACT requirements for each of these facility types. The guidance documents are periodically updated when the industry standard for control changes. The guidance documents were used as the basis of the BACT determinations, supplemented by updates from TCEQ of changes which may not yet have been incorporated into the guidance documents. Each equipment type and pollutant emitted from the project is addressed separately in the remainder of this section.

The following sections of the application describe the BACT analysis for the activities covered in this amendment.

6.1 Circulated Fluidized Bed (CFB) Boilers

The combustion products include criteria pollutants such as NO_X , SO_2 , CO, VOC, and $PM/PM_{10}/PM_{2.5.}$ Firing pet coke will also generate emissions of $H_2SO_4.$, HCl, or HF; and trace metals such as Pb and Hg. Because each CFB boiler will be equipped with a SNCR control device, emissions from NH_3 slip are also expected.

In summary, the CFB boilers will use the best available control technology (BACT) to reduce emissions including limestone injection directly into the boilers to reduce sulfur dioxide emissions, selective non-catalytic reduction (SNCR) to reduce nitrogen oxide emissions, a polishing scrubber to further reduce acid gas emissions, and finally a fabric filter to reduce particulate and metals emissions. The proposed BACT emission limitations for the CFB boilers are included in Table A-2 of Appendix A.

6.1.1 NO_x Emissions

In CFB boilers, a level of NO_x emissions control is achieved through fluidized bed combustion boiler design that provides a lower peak combustion temperature and longer residence time in the furnace. In CFB boilers, the bed material is fluidized with a combination of primary and secondary air, and combustion gases. The combustion of the fuel occurs in two zones: a primary reducing zone in the lower section of the furnace and the final combustion zone located above the upper level of secondary air inlets to the furnace. This staged combustion process effectively suppresses NO_x formation. In CFB boilers, combustion takes place at temperatures ranging from 1,500 to 1,650°F, and the high degree of mixing in the bed results in these

temperatures being uniform throughout the bed. The thermal NO_x formation, a high temperature process occurring mainly at temperatures >2,000°F, is lower in CFB boilers, thereby significantly reducing the NO_x production in the combustion chamber. Additional NO_x emissions control can be achieved through the use of SNCR or selective catalytic reduction (SCR) add-on control systems to convert NO_x to nitrogen and water.

The SNCR process utilizes elevated temperatures to catalyze the NO_x-ammonia reaction. For most effective SNCR operation, the temperature of the gas in the reaction zone must be in the range of 1,600 to 1,800°F. The effectiveness of this method is also dependent on initial NO_x concentration, residence time, and mixing in the reaction zone. Since an SNCR system does not need a catalyst to facilitate the NO_x reduction reaction, it is much simpler control technique that is appropriately applied to CFB boilers. SNCR is a demonstrated technology for control for NO_x emissions from CFB boilers.

In the SCR system the NO_x-ammonia reaction is catalyzed by a vanadium-based catalyst. The flue gas is passed through a catalyst bed in the presence of ammonia. Typically, the SCR reactor is located between the economizer and air heater to assure the optimum operating temperature of 700 to 750 °F. Ammonia is injected after the economizer and prior to the catalyst bed and reacts with NO_x to form nitrogen and water. The SCR system performance depends upon NO_x concentration, ammonia feed rate, flue gas and ammonia mixing, catalyst type, volume, age, and operating temperature.

Currently, application of SCR technology on a CFB is limited because the relatively high concentration of PM in the flue gas that would plug and poison the catalyst bed, thereby reducing its effectiveness and control efficiency. Use of an SCR after PM control (baghouse) would protect the catalyst, but the flue gas stream would require re-heating to allow the SCR to work effectively. Pre-heating the flue gas will consume more fuel and consequently result in more combustion generated air emissions.

Due to limitations noted above, SCR systems are not used for NO_x control on CFB boilers. LBEC maintains that the CFB design and use of SNCR controls is BACT meeting the emission limitations of 0.1 lb/MMBTU on a short-term basis and 0.07 lb/MMBTU on an annual basis.

6.1.2 SO₂ Emissions

Unique to the fluidized bed process, sorbent (crushed limestone) is injected directly into the fluidized bed of the furnace, where it comes into direct contact with the SO₂ produced from the oxidation of fuel sulfur. Through the use of limestone sorbent material, sulfur present in the fuel is retained in the circulating solids in the form of calcium sulfate (CaSO₄), allowing a higher sulfur retention rate. Because of the excellent mixing of gases and sorbents in the bed, the CFB requires less sorbent per unit mass of SO₂ produced than other conventional combustion technologies. The design of a CFB boiler provides for removal of SO₂, typically greater than 98%, in the combustion process without the use of add-on post-combustion controls. Limiting the formation of SO₂ reduces the amount of SO₃ formed, thereby providing reducing sulfuric acid mist.

Within the furnace, limestone is first reduced or calcinated to calcium oxide. The calcium oxide then quickly reacts with the sulfur that has been oxidized (SO_2) to form $CaSO_4$. Calcium sulfate or gypsum is chemically stable in the fluidized bed and is removed from the bed or downstream in the fabric filter baghouse as a solid. In addition to the control achieved through limestone injection directly into the CFB, LBEC also proposes a polishing scrubber to enhance the reductions of SO_2 emissions as well as other acid gases (HCI, HF, and H₂SO₄.).

LBEC maintains that the direct limestone injection in the CFB boiler will achieve an SO₂ emissions reduction of 98% and therefore satisfy BACT requirements.

6.1.3 CO Emissions

Carbon monoxide emissions are minimized through ideal combustion practices including high temperatures, adequate excess air and residence time, and optimal fuel/air mixing during combustion. Therefore, the emission reduction option proposed to mitigate CO emissions from the CFB boilers is the application of good combustion practices, including the use of combustion controls that optimize the design, operation, and maintenance of the furnace and combustion system. The furnace/combustion system design on modern CFB boilers provides the operating environment required to facilitate complete combustion. The CFB design, in particular, provides for continuous mixing of air and fuel in the proper proportions, extended residence time, and consistent temperatures in the combustion chamber. As a result, the designed furnace/ combustion system will limit CO formation by maintaining the optimum furnace temperature and amount of excess oxygen. LBEC maintains that the CFB design and the use of good

combustion practices satisfy BACT requirements of 0.15 lb/MMBTU on a short-term and annual basis.

6.1.4 VOC Emissions

Similar to CO, VOC emissions are minimized through ideal combustion practices including high temperatures, adequate excess air and residence time, and optimal fuel/air mixing during combustion. Therefore, the emission reduction option proposed to mitigate VOC emissions from the CFB boilers is the application of good combustion practices, including the use of combustion controls that optimize the design, operation, and maintenance of the furnace and combustion system. The furnace/combustion system design on modern CFB boilers provides the operating environment required to facilitate complete combustion. The CFB design, in particular, provides for continuous mixing of air and fuel in the proper proportions, extended residence time, and consistent temperatures in the combustion chamber. LBEC maintains that the CFB design and the use of good combustion practices satisfy BACT requirements 0.005 lb/MMBTU on a short-term and annual basis.

6.1.5 PM/PM₁₀ Emissions

Particulate emissions may be categorized as either filterable particulate matter or condensable particulate matter. Filterable PM, made up of solid and liquid particles that can be captured on the filter of a stack test train and chemical species that form in the atmosphere as the stack gas is cooled and diluted after it exits the stack, is generated by a variety of mechanisms including: (a) inorganic material within the fuel, (b) incomplete combustion and agglomeration of unburned fuel particles, (c) inorganic materials contained in the sorbent material (limestone) that are entrained in the combustion air, and (d) high temperature oxidation of trace metals. Condensable PM is that material that is in the vapor phase at stack conditions, but which quickly condenses and/or reacts upon cooling and dilution in the ambient air to form solid or liquid PM after discharge from the stack. Condensable PM may include aerosols (such as H₂SO₄), a range of volatile organic compounds, and ammonia or possibly some ammonium salts.

Generation of PM_{10} can be minimized by maximizing the residence time, providing sufficiently high combustion temperatures, and selecting fuels with high organic content. The design of a CFB boiler is inherently a PM_{10} control device because the long fuel residence time of CFB boilers allows for more complete combustion of organic material with corresponding decrease in the amount of the PM_{10} emitted. Filterable PM from solid fuel combustion sources is controlled

using either fabric filters (also called baghouses) or an electrostatic precipitator (ESP). These types of PM/PM_{10} emission control devices are based on well-established technologies. Of these two types of equipment, fabric filters are the most effective means of controlling filterable PM/PM_{10} emissions from CFB units.

Since, condensable PM does not form within the combustion process itself; there is no direct control technology for it. The fabric filter may help to reduce the amount of reactants that can eventually form condensable PM; however, the system itself does not remove condensable PM from the gas stream. Instead, the system reduces the potential for condensable PM formation by reducing sulfuric acid mist emissions by reacting SO_3 with the lime so it can be removed with a fabric filter.

LBEC maintains that the CFB boiler design and installation of a fabric filter system satisfy the current BACT requirements for PM/PM_{10} emissions, including lead. In addition, this combination of emission controls is also determined to be BACT for emissions of metallic HAPs. As a result, LBEC maintains that achieving a filterable PM_{10} emission limitation of 0.015 lb/MMBTU on a short-term and annual basis meets BACT requirements.

6.1.6 H₂SO₄ Emissions

Similar to SO₂, H₂SO₄ emissions are minimized by the CFB boiler design and through the direct limestone injection in the CFB boiler. As previously mentioned, LBEC also proposes a polishing scrubber to enhance the reductions of SO₂ emissions as well as other acid gases (HCI, HF, and H₂SO₄). LBEC maintains that the CFB boiler design and limestone injection along with the polishing scrubber will achieve an H₂SO₄ emissions reduction of 90% and therefore satisfy BACT requirements.

6.1.7 HCI and HF Emissions

Combustion of fossil fuels also result in emissions of chlorine and fluorine, primary in the form of HCI and HF as a result of oxidation of trace concentration of chlorine and fluorine present in fossil fuels. It is expected that some of emission will be controlled by the limestone injection into the boiler. Moreover, these acid gases are highly reactive hydrophilic and readily controlled by acid gas scrubbing systems. As previously mentioned, LBEC also proposes a polishing scrubber to enhance the reductions of SO₂ emissions as well as other acid gases (HCI, HF, and H_2SO_4). LBEC maintains that the CFB boiler design and limestone injection along with the

polishing scrubber will achieve an emissions reduction of 95% for HCl and HF and therefore satisfy BACT requirements.

6.1.8 Pb Emissions

Lead is emitted in the form of particulate matter. Therefore, it will also be controlled by the CFB design and fabric filters. As previously stated, LBEC maintains that the CFB boiler design and installation of a fabric filter system satisfy the BACT requirements for PM/PM₁₀ emissions, including lead.

6.1.9 Hg Emissions

The reduced operating temperature associated with a CFB boiler design and the SO_2 control system provides more opportunity to condense mercury compounds and allows collection to take place. The flue gas temperature for the CFB boilers is projected to be in the range of 150 to 160°F compared to a typical flue gas temperature for a pulverized coal boiler of around 300°F. This reduced flue gas temperature is expected to result in mercury being emitted more as a particle and less as a gas, thereby considerably enhancing mercury control/capture by PM/PM₁₀ controls.

Besides the inherent control of mercury by the CFB boiler technology, the control technologies proposed for SO₂ and PM/PM₁₀ emissions have the added benefits of removing mercury from the flue gas through direct absorption, collection, and scrubbing. The removal of mercury from the flue gas is highly dependent on the speciation of mercury. Mercury in flue gas is either in elemental form (gaseous) or oxidized form (gaseous and particulate). Mercury in the particulate (oxidized) form is collected very efficiently by fabric filters. Also, there is some absorption of gaseous elemental mercury by fabric filters.

Finally, in order to further reduce mercury emissions, LBEC may require the use of activated carbon injection to the exhaust gas. In the event that it necessary, LBEC will construct four activated carbon injection silos (one for each boiler).

LBEC maintains that the CFB design and add-on controls for SO_2 (i.e., limestone injection in the CFB boiler), PM/PM_{10} (i.e., fabric filter), and the use of activated carbon as necessary will achieve an emission limit of 3.0×10^{-6} lb/MMBtu (as listed in the previously proposed MACT – 40 CFR§63, Subpart DDDDD) and therefore satisfy BACT requirements.

6.1.10 NH₃ Emissions

 NH_3 emissions will be limited through the use of operational instrumentation systems to limit the NH_3 injection rate such that the annual NH_3 slip from the SNCR system will be less than 5 ppmv (dry, corrected to 3% oxygen). LBEC maintains that the use of the operational control systems satisfy BACT requirements.

6.1.11 Start-Up Emissions

LBEC will utilize a Good Engineering Practice (GEP) / Best Management Practice (BMP) Standard to limit start-up emissions associated with the CFB boilers. LBEC maintains that the use of the GEP/BMP Standard satisfy BACT requirements. This includes initiating startup with natural gas and minimizing the length of time to achieve steady-state operations.

6.2 Auxiliary Boilers

This section addresses BACT requirements for the auxiliary boilers. The boilers will meet the TCEQ established BACT guidelines for natural gas fired boilers operating on a limited basis as follows:

- CO 100 ppmv corrected to three percent oxygen
- NOx 0.035 pounds per million BTU
- SO2 Combustion of low sulfur fuels
- PM Good combustion operating practices; combustion of low sulfur fuels
- VOC Good combustion operating practices

Accordingly, LBEC will use low-NO_x burners in the boilers to limit NO_x emissions to 0.035 pounds per MMBtu when burning natural gas. Limiting the sulfur content of the natural gas to 5 gr/ 100 scf will minimize SO₂ emissions from the boilers.

Particulate matter emissions will be minimized by using natural gas and efficient combustion technology in the boilers. The low solids content of the natural gas will result in insignificant emissions of particulates from the boilers. CO and VOC emissions from the boilers will be minimized by employing efficient combustion technology.

6.3 **Propane Vaporizers**

This section addresses BACT requirements for the propane vaporizers. The vaporizers will meet the TCEQ established BACT guidelines for natural gas fired combustions sources (<40 MMBTU/hr and otherwise qualifying for permit-by-rule) and operating on a limited basis as follows:

• CO – 100 ppmv corrected to three percent oxygen

- NOx 0.1 pounds per million BTU
- SO2 Combustion of low sulfur fuels
- PM Good combustion operating practices; combustion of low sulfur fuels
- VOC Good combustion operating practices

Accordingly, LBEC will use low-NO_x burners in the vaporizers to limit NO_x emissions to 0.035 pounds per MMBtu when burning natural gas. Limiting the sulfur content of the natural gas to 5 gr/ 100 scf will minimize SO₂ emissions from the vaporizers.

Particulate matter emissions will be minimized by using natural gas and efficient combustion technology in the vaporizers. The low solids content of the natural gas will result in insignificant emissions of particulates from the vaporizers. CO and VOC emissions from the vaporizers will be minimized by employing efficient combustion technology.

6.4 Material Handling Facilities

LBEC will utilize LBTC for a significant portion of material handling activities. Figure 4-1 provides a general material handling process flow diagram that details which activities are included in this permit application vs. those activities being authorized by LBTC. The following is a BACT analysis for the material handling activities included in this permit application.

6.4.1 Pet Coke

Pet coke will be reclaimed by conveyors from the LBTC stockpiles to twenty storage silos. Each CFB boiler is equipped with five storage silos that share a common fabric filter system that consists of two fabric filters to provide a high level of particulate emission control. LBEC maintains that the use of enclosed conveyor systems and fabric filters with an outlet grain loading rate of 0.01 gr/dscf satisfy BACT requirements.

6.4.2 Limestone

Limestone will be reclaimed by conveyors from the LBTC stockpiles to four storage bunkers. Each CFB boiler limestone bunker is equipped with a fabric filter to provide a high level of particulate emission control. LBEC maintains that the use of enclosed conveyor systems and fabric filters with an outlet grain loading rate of 0.01 gr/dscf satisfy BACT requirements.

6.4.3 Lime

Lime will be unloaded pneumatically from trucks into nine storage silos. Each storage silo is equipped with a fabric filter to provide a high level of particulate emission control. LBEC

maintains that the use of fabric filters with an outlet grain loading rate of 0.01 gr/dscf satisfy BACT requirements.

6.4.4 Soda Ash

Soda ash will be unloaded pneumatically from trucks into one storage silos. The storage silo will be equipped with a fabric filter to provide a high level of particulate emission control. LBEC maintains that the use of fabric filters with an outlet grain loading rate of 0.01 gr/dscf satisfy BACT requirements.

6.4.5 Sand

Sand will be unloaded pneumatically from trucks into one of four day bins. Each day-bin will be equipped with a fabric filter to provide a high level of particulate emission control. LBEC maintains that the use of fabric filters with an outlet grain loading rate of 0.01 gr/dscf satisfy BACT requirements.

6.4.6 Fly Ash

Fly ash will collected from each CFB fabric filter and pneumatically transferred four storage silos. Each storage silo is equipped with a fabric filter to provide a high level of particulate emission control. LBEC maintains that the use of fabric filters with an outlet grain loading rate of 0.01 gr/dscf satisfy BACT requirements.

6.4.7 Bottom Ash

Bottom ash will be pneumatically transferred from the boilers through a cooling stage into four storage silos. Each storage silo is equipped with a fabric filter to provide a high level of particulate emission control. LBEC maintains that the use of fabric filters with an outlet grain loading rate of 0.01 gr/dscf satisfy BACT requirements.

6.4.8 Activated Carbon

Activated carbon will be pneumatically transferred from the boilers through a cooling stage into four storage silos. Each storage silo is equipped with a fabric filter to provide a high level of particulate emission control. LBEC maintains that the use of fabric filters with an outlet grain loading rate of 0.01 gr/dscf satisfy BACT requirements.

6.5 Diesel-Fired Emergency Generators

Combustion emissions from the diesel fired emergency generators will only occur in the event of an emergency or unscheduled event or possibly during startup. BACT for these types of

emergency-related equipment are typically satisfied by restricting the number of hours these sources operate during the year. LBEC maintains that the limited number of annual operating hours (< 500 hrs/yr) and use of low sulfur diesel (< 500 ppm) satisfy BACT requirements.

6.6 Diesel-Fired Fire Water Pumps

Combustion emissions from the diesel fired water pumps will only occur in the event of an emergency or unscheduled event or possibly during startup. BACT for these types of emergency-related equipment are typically satisfied by restricting the number of hours these sources operate during the year. LBEC maintains that the limited number of annual operating hours (< 500 hrs/yr) and use of low sulfur diesel (< 500 ppm) satisfy BACT requirements.

6.7 Diesel-Fired Boiler Feed Water Pumps

Combustion emissions from the diesel-fired feed water pumps will only occur in the event of an emergency or unscheduled event or possibly during startup. BACT for these types of emergency-related equipment are typically satisfied by restricting the number of hours these sources operate during the year. LBEC maintains that the limited number of annual operating hours (< 500 hrs/yr) and use of low sulfur diesel (< 500 ppm) satisfy BACT requirements.

6.8 Storage Tanks

The fixed roof storage tanks included in this permit application are submerged filled and each have a storage capacity of less than 25,000 gallons and store materials with a vapor pressure less than 0.5 psia.; therefore, satisfy BACT requirements. The anhydrous ammonia storage tanks are pressure tanks and should not have any emissions during normal operations.

6.9 Fugitive Emissions

Emissions are also generated from potentially leaking process equipment in natural gas and ammonia service. These fugitive emissions were estimated using TCEQ recommended factors. Because the proposed facility will have a small number of pumps, valves, flanges, etc. in VOC service and the proposed emissions without taking credit for any leak detection and repair (LDAR) program are minimal, an LDAR program would not result in a significant emissions decrease. In addition, TCEQ guidance suggests that an LDAR Program is not required when uncontrolled VOC emissions are less than 10 tpy. As such, LBEC proposes that BACT for VOC fugitive emissions does not include an LDAR program.

An Audio/Visual/Olfactory (AVO) LDAR program will be used to monitor fugitive components in NH₃ service associated with the SNCR on each CFB. The AVO LDAR program is BACT for units with potentially odorous compounds.

6.10 Cooling Towers

PM emissions from cooling tower water droplet drift can be minimized by limiting either the amount of drift or the level of dissolved solids in the water. Dissolved solids build up in the recirculating water as a result of the evaporation that occurs in the cooling tower and must be limited to prevent scaling problems in the cooling tower. This is done by blowing down a portion of the water and adding makeup water that is low in dissolved solids. Water availability, conservation and cost considerations impose limits on the amount of makeup water that can be used. These factors limit the degree to which particulate emissions from drift can be controlled by reducing the dissolved solids concentration in the water. The drift rate, expressed as a percent of the recirculation rate, can be minimized through cooling tower design and the use of mist eliminators. Both technologies will be utilized on the cooling towers to limit drift to 0.0005% of the recirculation rate. No additional technologies are available for drift control; therefore, this design is proposed as BACT.

Section 7 PAL Emissions Cap Compliance Methodology

Plantwide Applicability Limits (PALs) for each pollutant, calculated as the sum of the individual emissions rates from each of the emissions points presented in this section, are presented in Table A-1. These PALs are the proposed annual emissions limits to be included in the maximum allowable emission rate table. Future physical changes and changes in the method of operation are allowed without triggering an additional PSD review provided these limits are not exceeded. Addition of new facilities will require state-only NSR authorization from TCEQ.

This section of the permit application includes a discussion of how LBEC will demonstrate compliance with each PAL, including both the methods used to calculate actual site-wide emissions and monitoring and recordkeeping to support the calculations. Compliance with each PAL will be demonstrated on a rolling 12-month basis.

7.1 NO_x Emissions

The CFB boilers at the LBEC Plant will be equipped with NOx CEMs as required by the Acid Rain Program. Total emissions for each month as reported to EPA for Acid Rain purposes will be used for each of these units in the cap compliance demonstration.

Other sources of NO_x at the plant include emergency generators and fire water pumps. Emissions from these sources will be based on monthly fuel usage for each unit and AP-42 fuelbased emission factors.

7.2 SO₂ Emissions

The CFB boilers at the LBEC Plant will be equipped with SO_2 CEMs as required by the Acid Rain Program. Total emissions for each month as reported to EPA for Acid Rain purposes will be used for each of these units in the cap compliance demonstration.

Other sources of SO₂ at the plant include emergency generators and fire water pumps. Emissions from these sources will be based on monthly fuel usage for each unit and AP-42 fuelbased emission factors.

7.3 CO Emissions

The CFB boilers at the LBEC Plant will be equipped with CO CEMs. Total emissions for each month will be used for each of these units in the cap compliance demonstration.

For the emergency generators and fire water pumps, CO emission rates will be calculated from monthly fuel usage rates and AP-42 fuel-based emission factors.

7.4 VOC Emissions

Monthly VOC emissions from the CFB boilers will be calculated from monthly fuel firing rates and fuel-based emission factors. Monthly fuel firing rates will be determined from pet coke totalizers and fuel flow meters and converted to mmbtu as necessary using measured fuel heating values as described previously for the SO₂ and PM/PM₁₀ emissions calculations. For natural gas firing, AP-42 emission factors will be used in the emissions calculations. For pet coke firing, VOC emission factors, in Ib/MMBtu, will be used in the emissions calculations.

For the emergency generators and fire water pumps, VOC emission rates will be calculated from monthly fuel usage rates and AP-42 fuel-based emission factors.

Monthly VOC emissions from the storage tanks will be calculated using the currently approved version of the EPA Tanks program and actual monthly tank throughput data. Physical characteristics (vapor pressure and molecular weight) of the materials will be based on the best available data, which may include representative published data, fuel supplier data, and/or actual analysis of the material stored in each tank.

7.5 PM/PM₁₀ Emissions

For the CFB boilers, actual monthly emissions of PM/PM₁₀ for PAL compliance demonstration will be calculated by multiplying fuel-based emission factors (lb/MMBtu) determined by performance testing by the total fuel fired (mmbtu) in each boiler for the month. It will be conservatively assumed that all of the PM will be emitted as PM₁₀ for the CFB boilers. The factors will include both front and back half particulate fractions. The total monthly pet coke usage in tons is measured using pet coke totalizers on each boiler. The monthly pet coke usage (lb) is then multiplied by the heating value of the pet coke (btu/lb). A monthly average pet coke heating value is obtained by averaging the pet coke shipment is provided to LBEC by the pet coke supplier. Fuel oil and natural gas are used only for startup. AP-42 emission factors will be

used to calculate PM/PM₁₀ emissions for both natural gas firing in the CFB boilers. Emission factors in lb per unit of fuel used will be multiplied by the monthly fuel usage rate as measured by fuel flow meters.

For the emergency generators and fire water pumps, PM emission rates will be calculated from monthly fuel usage rates and AP-42 fuel-based emission factors. It will be conservatively assumed that all of the PM will be emitted as PM₁₀.

PM and PM₁₀ emission rates from materials handling will be calculated by multiplying the emission factor used as the basis of the NSR permit limit for each EPN by the total monthly throughput for the EPN. Where readily available, monthly throughputs will be actual throughputs obtained from plant operating records. Otherwise, the throughput used for the calculation will be assumed to be equal to the permitted maximum rate.

PM and PM_{10} emission rates from the cooling towers will be based on the assumption included in Table A-12 of the permit application including assumption on the distribution of $PM_{2.5}$.

7.6 H₂SO₄ Emissions

Monthly emissions of H_2SO_4 will be calculated from pet coke combustion in the CFB boilers and using fuel usage rates in MMBtu and emission factors in lb/MMBtu as determined during performance testing. Fuel usage rates in MMBtu will be determined from pet coke totalizers and the average heating value of the pet coke as described above for the calculation of PM /PM₁₀ emissions.

 H_2SO_4 emissions from minor combustion sources, including emergency generators and fire water pumps are zero to negligible and are thus not quantified by LBEC and will not be considered in assessing compliance with the PAL.

7.7 Recordkeeping

LBEC will maintain records of all monitoring data, operating parameters, and any other supporting data used in the calculations described in this section at the LBEC Plant for a period of 5 years.

Section 8 Permit Application Fee

In accordance with 30 TAC §116.141, the permit amendment fee is determined from the capital cost associated with the modification of existing sources or the installation of new emissions sources. Therefore, based upon the capital cost associated with this permit amendment application, a fee of \$75,000 is required for this permit application. TCEQ Table 30 (Estimated Capital Cost and Fee Verification) is included in this section.

A check is being submitted concurrently with this application to the TCEQ Financial Administration Division for the fee required for this air permit amendment. A copy of the fee check is included in this section.

Texas Commission on Environmental Quality Table 30 Estimated Capital Cost and Fee Verification

Include estimated cost of the equipment and services that would normally be capitalized according to standard and generally accepted corporate financing and accounting procedures. Tables, checklists, and guidance documents pertaining to air quality permits are available from the Texas Commission on Environmental Quality, Air Permits Division Web site at www.tccq.state.tx.us/nav/permits/air permits.html.

Ι.	DIF	RECT COSTS [30 TAC § 116.141(c)(1)]	Estimated Capital Cost
	А.	A process and control equipment not previously owned by the applicant and not currently authorized under this chapter	> \$7,500,000
	В.	Auxiliary equipment, including exhaust hoods, ducting, fans, pumps, piping, conveyors, stacks, storage tanks, waste disposal facilities, and air pollution control equipment specifically needed to meet permit and regulation requirements	-
	C.	Freight charges	-
	D.	Site preparation, including demolition, construction of fences, outdoor lighting, road and parking areas	-
	E.	Installation, including foundations, erection of supporting structures, enclosures or weather protection, insulation and painting, utilities and connections, process integration, and process control equipment	-
	F.	Auxiliary buildings, including materials storage, employee facilities, and changes to existing structures	-
	G.	Ambient air monitoring network	_
11.	IND	IRECT COSTS [30 TAC § 116.141(c)(2)]	Estimated Capital Cost
	Α.	Final engineering design and supervision, and administrative overhead	-
	В.	Construction expense, including construction liaison, securing local building permits, insurance, temporary construction facilities, and construction clean-up	-
	C.	Contractor's fee and overhead	
то	TAL	ESTIMATED CAPITAL COST	> \$7,500,000

I certify that the total estimated capital cost of the project as defined in 30 TAC § 116.141 is equal to or less than the above figure. I further state that I have read and understand Texas Water Code § 7.179, which defines <u>CRIMINAL OFFENSES</u> for certain violations, including intentionally or knowingly making, or causing to be made, false material statements or representations.

Company Name:Las Brisas Energy Cente	er, LLC	1	
Company Representative Name (please p	print): A and UR	Hachtitle: Mara	Long KARTNER
Company Representative Signature:	1. Pela	f st of the second seco	
	19 100	//	

Est	imated Capital Cost	Permit Application Fee	PSD/Nonattainment Application Fee
Less than	\$300,000	\$900 (minimum fee)	\$3,000 (minimum fee)
\$300,000 to	\$25,000,000	0.30% of capital cost	
\$300,000 to	\$7,500,000		1.0% of capital cost
Greater than	\$25,000,000	\$75,000 (maximum fee)	
Greater than	\$7,500,000		\$75,000 (maximum fee)

PERMIT APPLICATION FEE (from table above) = <u>\$75,000</u> Date: <u>5/16/2008</u>

PA, 10 THE ORDER OF Seventy-Five Thou Texas De Memo Las Brisas E	wer Development LLC 130 Rogerdale Suite 120 ston, Texas 77042 Department of Environmental (usand and 00/100*********************************	Quality	Wachovia 7344 Louetta Road Spring, Texas 77379	001033 DATE 5/13/2008 **75,000.00 ********************************
	1:1110	15159:200	0037566968 1033	
Chase Power Dev Texas Depar	relopment LLC tment of Environmental Qualit	y	5/13/200	001033 18 75,000.00
Wachovia Chase Power Dev Texas Depar	Las Brisas Energy Cent relopment LLC tment of Environmental Qualit	er y	5/13/200	75,000.00 001033 88 75,000.00

Wachovia

Section 9 Prevention of Significant Deterioration Review

The project emissions were used to determine if the proposed project is subject to Federal Prevention of Significant Deterioration (PSD) permitting requirements. The facility will be located in Nueces County, which is designated as attainment for all pollutants. The proposed electrical generating facility is subject to PSD review for NO_x, ozone (VOC), CO, SO₂, H₂SO₄, and PM/PM₁₀, particulate matter less than 2.5 microns (PM_{2.5}) Form PSD-1 is included at the end of the section.

9.1 Air Quality Monitoring Requirements

PSD regulations require collection of up to one year of pre-construction ambient air quality monitoring data for each pollutant subject to PSD review unless the air quality impacts from the proposed source or modification are shown to be *de minimis*. The PSD regulations contain *de minimis* levels for each pollutant. The air quality impact analysis, which will be submitted separately from this application, is expected to demonstrate that the project is exempt from pre-construction monitoring for these pollutants. The report documenting the modeling analysis will verify this assumption. In the event that de minimis pre-construction monitoring levels are exceeded, representative ambient monitoring data from existing nearby monitors may be used in lieu of pre-construction monitoring.

9.2 Air Quality Modeling Requirements

An air quality modeling analysis is required to demonstrate the proposed emissions will not cause or contribute to a violation of any National Ambient Air Quality Standard (NAAQS) or PSD increment for pollutants subject to PSD review (NO_x, VOC, CO, SO₂, H₂SO₄, and PM/PM₁₀). The TCEQ may also require a demonstration of compliance with the NAAQS and TCEQ property line standards for other pollutants. Modeling will be performed based on guidance from the TCEQ permit engineer during application review. The results of these analyses will be submitted to the TCEQ in a separate document.

9.3 Additional Impacts Analysis

Federal PSD regulations require an analysis of the emissions impact from the proposed project on soils and vegetation, visibility, and associated growth. These analyses will be performed concurrently with the air quality analysis, and the results will be included in the air quality analysis report.

Texas Natural Resource Conservation Commission Prevention of Significant Deterioration (PSD) Review

TABLE PSD-1 PSD AIR QUALITY APPLICABILITY SUPPLEMENT

TO BE COMPLETED BY APPLICANT AT TIME OF APPLICATION

A permit applicant must complete this table if PSD netting is required or if requested by permit engineer. This is not a stand-alone document. Please refer to the TNRCC *PSD Air Quality Guidance Document* for specific details regarding information required by this form. For additional information regarding PSD applicability and review, please refer to 40 CFR Part 52 Section 21 and EPA's Draft New *Source Review Workshop Manual* of October 1990 which provides examples for illustration.

Permit Application NoTBD	
Company : Las Brisas Energy Center, LLC TCEQ Air Quality Account I.D. TBD	
Company Contact: Mr. John Upchurch Phone Number : 281-636-2017	
Facility Location or Street Addresson the Joe Fulton Corridor bordering the west side of the Port of	
Corpus Christi Bulk Terminal	
City <u>: Corpus Christi</u> County: <u>Nueces</u>	
Permitted Unit I.D. and Name Various	
Permit Activity: X New Major Source 🛛 🗆 Major Modification	
Project or Process Description Four pet coke fired steam electric generating units and support facilities.	
Operating Schedule:hrs/daydays/wkwks/hr <u>8760</u> hrs/yr	
Continuous	
Or throughput	
The information provided on this form (and Tables PSD-2 and PSD-3, if applicable) is true and	
correct.	
	11

Signature Mart Martine Premer 5/16/2008

If Prevention of Significant Deterioration (PSD) review is required, then the applicant must send a complete application to EPA Region 6 at the address below. EPA Region 6 must also receive copies of all subsequent correspondence.

EPA Region 6 New Source Review Section 1445 Ross Avenue Dallas, TX 75202-2733

LIST RELEVANT DATES:

A.06/01/2009Estimated start of construction.B.06/01/20045 years prior to estimated start of construction.C.11/01/2012Estimated start of operation.

DEFINE CONTEMPORANEOUS PERIOD (from B to C): 06/01/2004 to 11/01/2012 From 5 years prior to estimated start of construction through estimated start of operation.

	Yes	No	Regulated Pollutant ¹						
			NO _x	SO ₂	со	Ozone	PMPM ₁₀	H_2SO_4	Pb
Existing site potential to emit ² (tpy)			NA	NA	NA	NA	NA	NA	NA
Proposed project increases ² (tpy)			3,823.8	10,480.3	8,154.2	283.0	3,004.0/ 2,901.4	1,996.6	0.1
Nonattainment New Source Review Applicability: If the proposed project will be located in an area that is designated nonattainment for any pollutants, place a check to the right in the column under that pollutant(s) and complete a Table 1N.									
Is the existing site one of the 28 named sources? ³	Х								
Is the existing site a major source? ⁴	Х								
Existing site is a major source:									
Is netting required? If "Yes" attach Tables PSD-2 and PSD-3. ⁵	NA								
Significance level as defined in 40 CFR 52.21(b)(23) ⁶			40	40	100	40	25/15	7	0.6
Net contemporaneous change from Table PSD-2 (tpy)			NA	NA	NA	NA	NA	NA	NA
Is PSD review applicable? Answer "Yes" or "No" under each applicable pollutant.			Yes	Yes	Yes	Yes	Yes	Yes	No
Existing site is NOT a major source:									
Is the proposed project by itself one of the 28 named sources ³	х								
Is the proposed project a major source by itself? (No consideration is given to any emissions decreases.) ⁴	х								
Once the project is considered major all other pollutants are compared to their respective significance levels. ⁶ Netting is not allowed. Is PSD review applicable? Answer "Yes" or "No" under each applicable pollutant.									

Regulated pollutants include criteria pollutants (pollutants for which a National Ambient Air Quality Standard [NAAQS] exists) and noncriteria pollutants (pollutants regulated by EPA for which no NAAQS exists). Defined in Part A of the TNRCC *PSD Air Quality Guidance Document.* The 28 named source categories are listed in 40 CFR 52.21(b)(1) and Table A of the TNRCC *PSD Air Quality Guidance Document.*

Refer to Part C "major source determination" of the TNRCC *PSD Air Quality Guidance Document.* Refer to Part E2 of the TNRCC *PSD Air Quality Guidance Document.* Significant emissions are defined in 40 CFR 52.21(b)(23) and Table B of the TNRCC *PSD Air Quality* Guidance Document.

Section 10 General Application Requirements

30 TAC §116.111 and 30 TAC §116.182 specify the general application requirements for permit applications. This section addresses each of those requirements.

10.1 Protection of Public Health and Welfare - 30 TAC § 116.111(a)(2)(A)

The emissions from the facilities comply with all air quality rules and regulations and with the intent of the TCAA, including protection of public health and welfare. Applicable regulations for LBEC are as follows:

10.1.1 Chapter 101 - General Air Quality Rules

The LBEC facility is operated in accordance with the General Rules relating to circumvention, nuisance, traffic hazard, notification requirements for emissions events and scheduled maintenance, startup and shutdown activities, sampling, sampling ports, emissions inventory requirements, sampling procedures, compliance with Environmental Protection Agency standards, the National Primary and Secondary Air Quality Standards, inspection fees, emissions fees, and all other applicable General Rules.

10.1.2 Chapter 106 – Permits by Rule

The LEBC facility does not plan to use permits by rule at this time.

10.1.3 Chapter 111 – Visible Emissions and Particulate Matter

The LEBC facility is subject to and will operate in compliance with all requirements of 30 TAC Chapter 111.

10.1.4 Chapter 112 - Sulfur Compounds

The LEBC facility is subject to and will operate in compliance with all requirements of 30 TAC Chapter 112.

10.1.5 Chapter 113 – Toxic Materials

This chapter references the regulations under 40 CFR Part 63. Applicability for those regulations is addressed in Section 10.5.

10.1.6 Chapter 114 – Motor Vehicles

The LEBC facility is subject to and will operate in compliance with all requirements of 30 TAC Chapter 114.

10.1.7 Chapter 115 - Volatile Organic Compounds (VOC)

The LEBC facility is subject to and will operate in compliance with the following subchapters of 30 TAC Chapter 115:

Subchapter B, Division 1, Storage of VOC

Subchapter C, Division 1, Loading and Unloading of VOC

10.1.8 Chapter 116 – New Construction or Modification

The LBEC facility will operate in compliance under multiple new source review authorizations.

10.1.9 Chapter 117 - Nitrogen Compounds

The LBEC facility is not subject to the requirements of 30 TAC Chapter 117.

10.1.10 Chapter 118 – Air Pollution Episodes

The LBEC facility will operate in compliance with all requirements of 30 TAC Chapter 118.

10.1.11 Chapter 122 – Federal Operating Permits

The LBEC facility is subject to and will operate in compliance with the requirements of 30 TAC Chapter 122. LEBC will submit a Title V permit application and acid rain permit application under separate cover and at the appropriate time.

10.1.12 Impact on Schools

There are no schools located within 3,000 feet of the affected facilities.

10.2 Measurement of Emissions - 30 TAC § 116.111(a)(2)(B)

Emissions will be sampled upon request of the Executive Director of the TCEQ.

10.3 BACT Technology - 30 TAC § 116. 111(a)(2)(C)

Section 6 of this application provides a detailed best available control technology analysis.

10.4 NSPS - 30 TAC § 116. 111(a)(2)(D)

The LBEC facility is subject to, and will operate in compliance with, the following New Source Performance Standards:

40 CFR Part 60, Subpart A	General Provisions
40 CFR Part 60, Subpart Da	Standards of Performance for Electric Utility Steam Generating Units for which Construction is Commenced After September 18, 1978
40 CFR Part 60, Subpart Db	Standards of Performance for Industrial-Commercial- Institutional Steam Generating Units
40 CFR Part 60, Subpart OOO	Standards of Performance for Nonmetallic Mineral Processing Plants
40 CFR Part 60, Subpart IIII	Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

10.5 NESHAP - 30 TAC § 116.111(a)(2)(E) and § 116.111(a)(2)(F)

The facility is subject to, and will operate in compliance with, the following National Emission Standards for Hazardous Air Pollutants:

40 CFR Part 63, Subpart A NESHAP for Source Categories - General Provisions

40 CFR Part 63, Subpart ZZZZ NESHAP for Stationary Reciprocating Internal Combustion Engines

10.6 Performance Demonstration - 30 TAC § 116.111(a)(2)(G)

This facility will perform as represented in the application and as required by the permit.

10.7 Nonattainment Review - 30 TAC § 116.111(a)(2)(H)

Nueces County is designated attainment/unclassified for all criteria pollutants; therefore, NNSR permitting is not required.

10.8 PSD Review - 30 TAC § 116.111(a)(2)(I)

Nueces County is an attainment area for Ozone, NO₂, CO, PM/PM₁₀/PM_{2.5} and SO₂. H_2S , for which there is no NAAQS, is also regulated by the PSD program. The emissions associated with this project do constitute a new major source; therefore, PSD review is required. See Section 9 for a detailed PSD analysis.

10.9 Air Dispersion Modeling – 30 TAC § 116.111(a)(2)(J)

LBEC will provide dispersion analyses and results demonstrating compliance with all applicable air quality standards and guidelines as requested by the TCEQ.

10.10 HAP - 30 TAC § 116.111(a)(2)(K)

The LBEC CFB boilers and Auxiliary boilers are not subject to any existing MACT standards; therefore, may likely be an affected source subject to the requirements of FCAA 112(g) or 112(j). LBEC recognizes that the vacatur of the Clean Air Mercury Rule, along with the absence of a source category MACT standard, may now subject the proposed CFBs to the requirements for case-by-case MACT pursuant to FCAA 112(g).

In addition, LBEC also recognizes that the vacatur of the Boiler MACT (40 CFR Part 63, Subpart DDDDD), along with the absence of a source category MACT standard, may now subject the proposed Auxiliary Boilers to the requirements for case-by-case MACT pursuant to FCAA 112(g) and/or the MACT Hammer provisions of FCAA 112(j).

However, at this time LEBC is awaiting guidance from the Court, TCEQ, and EPA prior to submitting an application to establish a case-by-case MACT limit for the CFBs and/or a 112(j) determination for the Auxiliary Boilers.

10.11 Mass Cap and Trade Allowances – 30 TAC § 116.111(a)(2)(L)

The LBEC facility is not subject to the requirements of the Mass Emissions Cap and Trade (MECT) program.

10.12 PAL Facilities - 30 TAC § 116.182(a)(1)

The facilities included in each PAL are described in Section 7 of this permit application. The state and federal regulatory applicability analysis is included in this section.

10.13 PAL Emission Calculation Basis – 30 TAC § 116.182(a)(2)

The calculations procedures used to demonstrate establish each PAL are described in Section 7 of this permit application.

10.14 PAL Cap Compliance – 30 TAC 116.182(a)(3)

The calculations procedures used to demonstrate compliance with each PAL are described in Section 7 of this permit application.

10.15 PAL Monitoring and Recordkeeping – 30 TAC 116.182(a)(4)

The parameters to be monitored for use in PAL compliance demonstration calculations and the subsequent records to be kept are described in Section 7 of this permit application.

Section 11 Disaster Review

The SNCR systems that will be used for NO_x control at the Las Brisas Energy Center will utilize anhydrous ammonia. A disaster review is required by TCEQ if more than 10,000 lb (~1,750 gallons) of anhydrous ammonia is stored on site. Anhydrous ammonia will be stored in two ammonia storage bullets each with a nominal capacity of 10,000 gallons (~57,000 lb); therefore, a disaster review is required. The plant will also be subject to EPA Risk Management Plan (RMP) regulations and, as required by these rules, will prepare an RMP which will be kept on file at the plant. A completed copy of the Disaster Review Checklist is included.

Disaster Review Checklist

1.0 PROCESS, CHEMICAL, AND SITE INFORMATION

- 1.1 Chemical name (per TCEQ Disaster Review Guidance¹): Ammonia anhydrous
- 1.2 Total quantity in process: Approximately 500 gallons (2,800 lbs) Maximum 20,000 gallons (114,000 lbs) maximum in 2 storage tanks
- 1.3 Phase at ambient temperature (77°F): liquid ____ gas _X__
- 1.4 Concentration of chemical in mixture 99.5 wt%
- 1.5 Liquid vapor pressure (or partial pressure in mixture) at ambient temperature: **157 psia**
- 1.6 Approximate distance to nearest EPA-defined receptor² **To be determined.**
- 1.7 Non-owned property within 1 mile of site (check all that apply): industrial <u>X</u> residential <u>X</u> commercial <u>X</u> rural <u>X</u>
- 1.8 Federal regulatory applicability for new Disaster Review chemical:

29 CFT 1910.119, OSHA Process Safety Management (PSM) Standard: Yes

40 CFR Part 68, EPA Risk Management Program (RMP) Rule: Yes

1.9 Does the facility have an EPA Risk Management Plan (RMP) on file for other chemical(s) that are subject to the RMP rule? **No, new facility**

Facility Name as given in RMP Checklist item 1.1a:

EPA Facility Identifier for RMP

¹ Technical Package for: NSRPD Disaster Review, TCEQ Air Permits Division, January 2001 (Draft).

² EPA-defined receptors include "off-site residences, institutions (e.g., schools and hospitals), industrial, commercial, and office buildings, parks, or recreational areas inhabited or occupied by the public at any time without restriction by the stationary source..."

Note: The existing RMP can be accessed at <u>http://www.epa.gov/ceppo</u> using RMP* Info. The plan will provide useful information regarding prevention and emergency response policies and practices at the site.

2.0 WORST CASE RELEASE SCENARIO AND RECEPTOR ANALYSIS

Note: The worst-case scenario (WCS) involves an immediate or near-immediate loss of the entire contents of the single largest chemical storage vessel or pipe. Per EPA definitions³, the WCS for a toxic chemical that is a gas at ambient temperature (such as anhydrous ammonia) is the complete loss of inventory as a gas over ten minutes. Worst-case meteorological conditions must be assumed (a stable, Class F atmosphere and low winds of 1.5 m/s). The WCS has the potential to produce off site impacts if airborne concentrations greater than or equal to the EPA toxic endpoint concentration (200 ppm for ammonia) could be experienced at an off site receptor as defined in Section 1.6 above.

Further guidance on estimating the potential for WCS off site impacts can be found within EPA's *Risk Management Program Guidance of Offsite Consequence Analysis* and its companion software, RMP* Comp. Both are available for download at http://www.epa.gov/ceppo.

Could a worst-case chemical release scenario produce off site impacts?

____ No; Complete and submit Section 1.0 and 2.0

X Yes; Complete and submit Sections 1.0, 2.0, and 3.0

3.0 PREVENTION AND EMERGENCY RESPONSE PROGRAMS

Note: Depending on applicability to federal regulations (the PSM Standard and RMP Rule), complete process hazard analyses, process safety and risk management programs and supporting documentation will need to be developed and submitted prior to initial delivery of the regulated chemical. For those facilities already subject to PSM and/or RMP, updates will be required to accommodate the new chemical.

The following information is required for the TCEQ Disaster Review at the time of the permit application. Provide information only as it pertains to the New Disaster Review chemical.

3.1 Applicable Chemical Storage and Handling Standards

OSHA 29 CFR 1910.111 ASTM standards ASME standards ANSI standards

³ 40 CFR Part 68 – Chemical Accident Prevention Provisions, Subpart B – Hazard Assessment.

3.2 Process Controls to be Applied

Vents	<u>X</u> Relief valves
Scrubbers	Flares
X Check Valves	X Manual shutoffs
X Interlocks	Keyed bypass
Purge system	Rupture disks

Emergency air supply Emergency power X Automatic shutoffs Grounding equipment Excess flow device

3.3 Mitigation Systems to be Applied

Sprinkler system	Water curtain
Enclosures	Fire walls
Deluge system	Neutralization

k	nock down NH3 vapors.						
around storage tank dike to							
F	ire monitors set up						
<u>X</u>	_ Other (specify)						
	_ Blast walls						
<u>X</u>	_ Dikes						

- 3.4 Monitoring/Detection Systems to be Applied
 - X Process area detectors

Perimeter monitors
Other (specify)

- 3.5 Emergency Response (ER) Plan
- 3.5.1 Is the facility included in a written community ER plan? **No** If not, will it be incorporated into the community plan prior to introducing the New Disaster Review chemical? **Yes**
- 3.5.2 Does the facility have its own written ER Plan which will be updated prior to delivery of the chemical on site? **No**
- 3.5.3 Does or will the facility ER Plan include procedures for informing the public and local agencies responding to accidental releases? **Yes**
- 3.5.4 Does or will the facility ER Plan include information on emergency health care? Yes
- 3.5.5 Does the facility ER program include training and drills for facility employees (both responders and non-responders)? **Yes**

Appendix A

Emission Calculations Details

Index to Calculation Tables

- Table A-1. Sitewide Emission Summary
- Table A-2. Emission Factor Summary
- Table A-3.
 CFB Boiler Emission Summary
- Table A-4. CFB Parameters
- Table A-5.
 CFB Stack Flow Calculations
- Table A-6. CFB Emission Calculations (one unit)
- Table A-7. CFB Trace Compound Data
- Table A-8. CFB Trace Compound Calculations
- Table A-9. CFB Cold Start-up Sequence for CFB
- Table A-10. Piping Equipment Fugitive Emission Calculations
- Table A-11. Fabric Filter Emission Calculations
- Table A-12. Cooling Tower Emission Calculations
- Table A-13.
 Emergency Diesel Generator (EDG) Emissions
- Table A-14. Diesel-Fired Fire Water Pump Emissions
- Table A-15. Diesel-Fired Fire Water Booster Pump Emissions
- Table A-16.
 Diesel-Fired Emergency Boiler Feed Water Pump Emissions
- Table A-17. Storage Tank Emission Calculations
- Table A-18. Auxiliary Boiler Emission Calculations
- Table A-19. Propane Vaporizer Emission Calculations

Table A-1.Sitewide Emission SummaryLas Brisas Energy Center, LLC

	Maximum Short-term Emission Summary (Ib/hr)											
Source Type	NOx	со	VOC	РМ	PM10	SO ₂	H₂SO₄	Ammonia	HCI	HF	Mercury	Lead
				·								
CFBs	1232.0	1848.0	61.6	726.9	726.9	2857.0	455.8	64.2	54.6	4.72	0.04	0.16
Material Handlining				29.3	29.3							
Cooling Towers				24.02	0.59							
Engines	106.54	76.78	24.57	4.10	4.10	2.67	0.21					
Tanks			0.11				0.16					
Boilers/Heaters	15.80	32.64	2.09	2.97	2.97	0.24						
Piping Fugitives			1.02					0.21				
Total	1,354.3	1,957.4	89.4	787.3	763.8	2,859.9	456.2	64.4	54.6	4.72	0.04	0.16
Source Type	NOv	0	VOC	Anr PM	nual Emissi	on Summary	y (tpy)	Ammonia	нсі	HE	Mercury	Lead
Source Type						502	112004	Ammonia			Mercury	Leau
CFBs	3777.3	8094.2	269.8	2806.0	2806.0	10479.3	1996.6	140.5	47.9	4.40	0.16	0.10
Material Handlining				88.1	88.1							
Cooling Towers				105.20	2.57							
Engines	26.72	19.16	6.16	1.05	1.05	0.70	0.06					
Tanks			0.00				0.00					
Boilers/Heaters	19.75	40.80	2.62	3.71	3.71	0.30						
Piping Fugitives			4.45					0.91				
Total	3 823 8	8 154 2	283.0	3004.0	2901.4	10 480 3	1996.6	141.4	47.9	4 40	0.16	0.10
	3,023.0	0,134.2	203.0	5004.0	2301.4	10,400.5	1330.0			7.40	0.10	

Table A-2. Emission Factor Summary

Parameter	Value	Unit
Annual NOx Emission Rate	0.07	lb/MMBtu (HHV)
Maximum NOx Emission Rate	0.1	lb/MMBtu (HHV)
Annual NH3 Concentration at 3% O2	5	ppmvd
Maximum NH3 Concentration at 3% O2	10	ppmvd
Annual CO Emission Factor	0.15	lb/MMBtu (HHV)
Hourly CO Emission Factor	0.15	lb/MMBtu (HHV)
Annual VOC Emission Factor	0.005	lb/MMBtu (HHV)
Hourly VOC Emission Factor	0.005	lb/MMBtu (HHV)
Average Pet. Coke Sulfur %	6.7%	
Maximum Pet. Coke Sulfur %	8.0%	
Minimum SO2 Removal Efficiency	98%	
Average Controlled SO2 Emission Factor	0.1942	lb/MMBtu (HHV)
Maximum Controlled SO2 Emission Factor	0.2319	lb/MMBtu (HHV)
Minimum HCI and HF Removal Efficiency	95%	
Average HCI Emission Factor	8.87E-04	lb/MMBtu (HHV)
Average HF Emission Factor	8.15E-05	lb/MMBtu (HHV)
Fabric Filter Control Efficiency for Trace Metals	99%	
Average Lead Emission Factor	1.91E-06	lb/MMBtu (HHV)
Maximum Conversion of SO2 to SO3	2.5%	
Minimum H2SO4 Removal Efficiency	90%	
Average H2SO4 Emission Factor	0.037	lb/MMBtu (HHV)
Maximum H2SO4 Emission Factor	0.044	lb/MMBtu (HHV)
Hg Emissions	3.00E-06	lb/MMBtu
Filterable PM10 Emission Rate	0.015	lb/MMBtu (HHV)
Fabric Filter Outlet Grain Loading	0.01	grs/dscf
Cooling Tower Drift Eliminator Efficiency	0.0005%	
Auxillary Boiler NOx Emissions	0.035	lb/MMbtu
Propane Vaporizers NOx Emissions	0.1	lb/MMbtu

Table A-3. CFB Boiler Emission Summary

	CFB Boiler Emission Summary															
FIN	FPN	Name		NOx	C	0	V	oc	P	M	5	5 0 2	Amn	nonia	H ₂	SO4
	EIN	Name	lb/h	r tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
-																
CFB-1	CFB1&2	CFB Boiler 1	308	.0 944.3	462.0	2023.6	15.4	67.5	181.7	701.5	714.3	2619.8	16.0	35.1	114.0	499.1
CFB-2	CFB1&2	CFB Boiler 2	308	.0 944.3	462.0	2023.6	15.4	67.5	181.7	701.5	714.3	2619.8	16.0	35.1	114.0	499.1
CFB-3	CFB3&4	CFB Boiler 3	308	.0 944.3	462.0	2023.6	15.4	67.5	181.7	701.5	714.3	2619.8	16.0	35.1	114.0	499.1
CFB-4	CFB3&4	CFB Boiler 4	308	.0 944.3	462.0	2023.6	15.4	67.5	181.7	701.5	714.3	2619.8	16.0	35.1	114.0	499.1
	Tota	I	1232	2.0 3,777.3	1848.0	8,094.2	61.6	269.8	726.9	2806.0	2857.0	10479.3	64.2	140.5	455.8	1996.6

Table A-4. CFB Parameters

Estimated CFB Performance							
Parameter	Value	Unit					
FACILITY CONDITIONS	42.000 5)					
Higher Heating value of Pet Coke	13,800 E 112 te	stu/iD on/hr					
Maximum coke firing rate	223,188 1	o/hr					
Gross Heat Input	3,080 N	/MBtu/hr					
Maximum Coke Sulfur Content	8.0%						
Average Coke Sulfur Content	6.7%						
Minimum SO2 Removal Efficiency	98.0%						
Minimum H2SO4 Removal Efficiency	90.0%						
Fabric Filter Control Efficiency for Trace Metals	99.0%						
Molar Volume at standard conditions (70F, 1atm)	387 f	³ /mol					
Maximum Exhaust Flow Rate	1,311,606 s	cfm					
Average Exhaust Flow Rate	1,311,606 s	cfm					
Maximum Conversion of SO_2 to SO_3	2.5%						
Excess Air	25%						
Power Output (one CFB)	300,000 k	W					
Power Output (Four CFBs)	1,200,000 k	VV					
Plant Auxiliary Loads	1,200,000 k	.vv \//					
Net Plant Power Output	1.100.000 k	W					
Exhaust Gas Flow Rate, wet per CFB	3,202,311 lt	o/hr					
CFB Exhaust Gas Flow Rate, wet per CFB	106,970 lt	omol/hr					
CFB Exhaust Gas Flow Rate, dry per CFB	3,106,885 lt	o/hr					
CFB Exhaust Gas Flow Rate, dry per CFB	101,675 lt	omol/hr					
CFB Exhaust Gas Flow Rate, dry at 3% O ₂ per CFB	94,365 lk	omol/hr					
CFB Exhaust Temperature	175 °	F					
CFB EMISSIONS							
Post-SNCR NO _x							
Annual NOx Emission Rate	0.07 II	o/MMBtu (HHV)					
Maximum NOx Emission Rate	0.10 ll	o/MMBtu (HHV)					
NH ₃ Emissions							
Annual NH ₃ Concentration in Flue Gas	4.6 p	pmvd					
Annual NH ₃ Concentration at 3% O_2	5 p	pmvd					
Maximum NH ₃ Concentration in Flue Gas	9.3 p	pmvd					
Maximum NH ₃ Concentration at 3% O ₂	10 p	pmvd					
CO Emissions							
Annual CO Emission Factor	0.15 II	o/MMBtu (HHV)					
Hourly CO Emission Factor	0.15 II	o/MMBtu (HHV)					
VOC Emissions	0.005						
Hourly VOC Emission Factor	0.005 II	o/MMRtu (HHV)					
SO₂ Emissions	0.000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Average Uncontrolled SO2 Emission Factor	9.7 lt	o/MMBtu (HHV)					
Average Controlled SO2 Emission Factor	0.1942 lt	o/MMBtu (HHV)					
Maximum Uncontrolled SO2 Emission Factor	11.6 lt	o/MMBtu (HHV)					
Maximum Controlled SO2 Emission Factor	0.2319 lt	o/MMBtu (HHV)					
Average H_2SO_4 Emission Factor	0.037 lt	o/MMBtu (HHV)					
Maximum H ₂ SO ₄ Emission Factor	0.044 lk	o/MMBtu (HHV)					
Filterable PM ₁₀ Emissions							
PM ₁₀ Emission Rate	0.015 II	o/MMBtu (HHV)					
Condensible PM ₁₀ Emissions							
Annual PM ₁₀ Emission Rate	0.0370 lt	o/MMBtu (HHV)					
Hourly PM ₁₀ Emission Rate	0.0440 lk	o/MMBtu (HHV)					
Total PM ₁₀ Emissions							
Annual PM ₁₀ Emission Rate	0.0520 lt	o/MMBtu (HHV)					
Hourly PM ₁₀ Emission Rate	0.0590 lk	o/MMBtu (HHV)					
STACK EXHAUST COMPOSISITION							
	∩ <i>1</i> /0/ √						
Nitrogen, No	76 75% v	ol					
	1 0.70/ v						
Carbon Dioxide. CO	4.07% V 13 79% v	ol					
Water. H ₂ O	1 95% v	ol					
Molecular Weight							

Table A-5. CFB Stack Flow Calculations

Las Brisas Energy Center, LLC

Petroleum Coke Composition								
Component	Mw	Fuel wt%	Mole Flow Rate (mole/ton)	Fuel mol%				
N2	28.013	1.40%	1.0	0.54%				
H2	2.016	4.00%	39.7	21.47%				
С	12.011	79.40%	132.2	71.53%				
S	32.066	6.70%	4.2	2.26%				
H2O	18.015	7.00%	7.8	4.20%				
			184.8					

Pet Coke Heating Value (HHV)

13800 BTU/lb

Fuel Input

Fuel Input (MMBTU/hr)	Fuel Flowrate (ton/hr)	Fuel Flowrate (Ibmol/hr)
3080.00	111.59	20627.56

Combustion Calculations

Component	Fuel Molar Flowrate (Ibmol/hr)	O2 Stoic. Coeff.	Oxygen Requireme nt (Ibmol/hr)	CO2 Stoic. Coeff.	CO2 Production (Ibmol/hr)	H2O Stoic. Coeff.	H2O Production (Ibmol/hr)
N2	111.5	0	0.0	0	0	0	0.0
H2	4428.3	0.5	2214.2	0	0.0	1	4428.3
С	14754.1	1	14754.1	1	14754.1	0	0.0
S	466.3	1	466.3	0	0.0	0	0.0
H2O	867.2	0	0.0	0	0.0	1	867.2
TOTALS	20627.6		17435		14754		5296

Air Requirements

Based on Maximum Du	ty		
Composition of Air is 21	% O2 and 79% N2		
Assume	25% Excess Air		
O2 Flowrate =	(17,435 lbmol O2/hr)(1 + 0.25)=	21793.27 lbmol/hr	
N2 Flowrate =	(21,793 lbmol/hr)(79 lbmol N2/21 lbmol O2)=	81984.21 lbmol/hr	
Air Flowrate =	(21,793 lbmol O2/hr)(1 lbmol Air/0.21 lbmol O2)=	103777.49 lbmol/hr	
	=	669,365 scfm	

Stack Flow

	Hourly	Hourly		
	Emission	Emission	Wet Conc.	Dry Conc.
Component	(lb/hr)	(lbmol/hr)	(% vol)	(% vol)
N2	2,299,781	82095.76	76.7%	80.7%
O2	139,477	4358.65	4.1%	4.3%
H2O		5295.57	5.0%	NA
CO2	649,325	14754.11	13.8%	14.5%
S		466.34	0.4%	0.5%
Totals	3,088,584	106,970		

Stack Parameters (for 2 CFBs with Combined Stack)

Dry Air Flowrate =	203,350 lbmol/hr
Exhaust Gas Temp. =	175 °F
Exhaust Gas Vol. =	1,311,606 scfm
Exhaust Gas Vol. =	1,571,452 acfm
Stack Diameter =	45.0 ft
Exhaust Velocity =	16.5 ft/sec

Table A-6. CFB Emission Calculations (one unit)

NO (bourby)	0.10 lb NO _x	3,080 MMBtu		
NO _x (nouny)	MMBtu	hr		
	0.07 lb NO _x	3,080 MMBtu	8760 hr	ton
NO _x (annual)	MMBtu	hr	yr	2000 lb
CO (bourly)	0.15 lb CO	3,080 MMBtu		
	MMBtu	hr		
	0.15 lb CO	3,080 MMBtu	8760 hr	ton
CO (annuar)	MMBtu	hr	yr	2000 lb
VOC (bourly)	0.005 lb VOC	3,080 MMBtu		
	MMBtu	hr		
	0.005 lb VOC	3,080 MMBtu	8760 hr	ton
VOC (annual)	MMBtu	hr	yr	2000 lb
	0.015 lb	3.080 MMBtu		
PM (hourly)	MMBtu	hr		
(FRONT HALF)				I .
PM (annual)	0.015 lb PM hr	3,080 MMBtu hr	8760 hr vr	2000 lb
			y.	2000 10
PM (hourly)	0.044 lb	3,080 MMBtu		
(BACK HALE)	MMBtu	hr		
PM (annual)	0.037 lb	3,080 MMBtu	8760 hr	ton
T W (annual)	MMBtu	hr	yr	2000 lb
	46.2 lb	(front half) + (back half)	135.5 lb	
PM (hourly)	hr		hr	
(TOTAL)	000 4 (cz. DM		100 4 15 5	
PM (annual)	202.4 ton PM	(front half) + (back half)	499.1 ton	
	yı		y i	

			_
=	308.0	lb/hr NO _x	
=	944.3	tpy NO _x	
I			
=	462.0	lb/hr CO	
Ш	2023.6	tpy CO	
=	15.4	lb/hr VOC	
=	67.5	tpy VOC	
=	46.2	lb/hr PM	
	(FRO	NT HALF)	
=	202.4	tpy PM	
=	135.5	lb/hr PM	
	(BAC	K HALF)	
=	499.1	tpy PM	
		lb/br DM	
=	181.7		
=	181.7 (T(DTAL)	

Page 2 of 2

Table A-6. CFB Emission Calculations (one unit)

Table A-7. CFB Trace Compound Data Las Brisas Energy Center, LLC

Average Con	ncentratio	ons (ppmw)														
					From R	eliant Energy	Limestone Ap	plication								
		Average +		Citgo/								Marathon Ashland Refinery Garyville,	JEA 80/20 Blend Table 7-4	JEA 80/20 Blend Table 7-4		TGS
Constituent	Symbol	25%	Amoco	Lyondell	Conoco	Mobil	Shell	Star	Tex Gulf C.	Utility Fuels	Phillips	Louisiana	8/10/04	8/11/04	NISCO	Trace Metals
Aluminum	AI	57.5										46				
Arsenic	As	1.97	0.6	1		0.1	1	6.3	1.3	2						0.3
Beryllium	Be	0.51	0.01	0.36	1	0.01	0.1	0.1	0.23	0.39						1.5
Cadmium	Ca	0.56	0.01	0.51	1	0.01	0.23	1.38	0.2	0.59		10				0.1
Calcium	Ca	23.75		100			100	142	100	520		19	200	100		
Chromium	Cr	244.02	10.9	1.01	2.19	15.6	190	142	100	30.1	1.25		200	100		
Copper	Cu	4 38	19.0	1.01	2.10	13.0	1.0	1.55	4	30.1	1.25					3.5
Eluorine	F	22.5	3.3	10		5.7	23	2	30	13			26	26		11
Iron	Fe	203 75	0.0	10		0.7	20		00	-10		76	20	20	250	
Lead	Ph	2.63	0.5	1.85	11	0.5	1.82	2 47	4 67	3.66		10	3	3	200	0.6
Magnesium	Ma	7.5	0.0	1.00		0.0		2		0.00		6		0		0.0
Manganese	Mn	12	1.87	1		1.09	46.5	4.14	1	28		0.4				2.4
Mercury	Ha	0.23	0.05	0.04		0.05	0.53	0.84	0.04	0.32	0.02	0.001	0.05	0.04		
Nickel	Ni	383.86	191	430	245	203	382	113	223	392	400	349			450	
Potassium	К	35										28				
Selenium	Se	0.98	0.1	0.3		0.1	1	0.93	1.33	0.52						2
Silicon	Si	65.63									88	17				
Sodium	Na	81.25										65				
Titanium	Ti	1.25										1				
Vanadium	V	1771.94	963	2340	719	750	1675	502			1692	1317			2800	
Ash		0.48	0.74	0.42	0.23	0.21	0.47	0.28			0.35					
Maximum Co	ncentra	tions (nnmw	3													
Maximum CC		Maximum	1													
		+ 50%														
Aluminum	AI	69										46				
Arsenic	As	14.25	1.1	1		0.1	1	9.5	2	5.33						0.3
Beryllium	Be	2.25	0.01	0.7	1	0.01	0.1	0.1	0.4	0.41						1.5
Cadmium	Cd	3	0.01	1	1	0.01	0.3	2	0.3	0.83						0.1
Calcium	Ca	28.5										19				
Chlorine	CI	1189.5		100			220	257	100	793			200	100		
Chromium	Cr	98.13	19.8	2	2.18	15.6	1.6	2.2	8	65.42	2					
Copper	Cu	5.25														3.5
Fluorine	F	100.5	4.3	10		5.7	45	5	50	67			26	26		11
Iron	Fe	375										76		ļ	250	ļ
Lead	Pb	18	0.5	2	1.1	0.5	2.2	3.6	12	4.11			3	3		0.6
Magnesium	Mg	9		ļ								6		ļ		
Manganese	Mn	945	1.87	1		1.09	80	12	630	78.28		0.4				2.4
Mercury	Hg	1.5	0.05	0.06		0.05	1	1	0.05	0.169	0.02	0.001	0.05	0.04		
Nickel	Ni	880.5	277	430	245	203	452	171	330	587	412	349		ł	450	
Potassium	К	42	0.1	0.3		0.1	1	1	2	0.52		28				
Selenium	Se	397.5									265					2
Silicon	SI	25.5							+			17				├──── ┃
Sodium	Na Ti	97.5										65				
Vanadium		1.5	1002	2240	710	750	1705	600	+		1770	1217		<u> </u>	2800	
Ach	v	4200	0.74	2340	(19	/ 50	0.51	0.26	+		0.57	1317		+	2000	
ASII	1	1.11	0.74	0.42	0.23	0.21	0.51	0.30	1		0.57	L	L			

Table A-8. CFB Trace Compound Calculations Las Brisas Energy Center, LLC

1aximum Coke Firi \nnual Average Cc 1eat Input - HHV, 1	ing Rate, lb/ oke Firing Ra MMBtu/hr:	hr: ate, lb/hr:	223,188.4 223,188.4 3,080.0								
Trace Elements	Symbol	Maximum ¹ Concentration ppmw	Average ¹ Concentration ppmw	Uncontrolled Total Ib/hr	Uncontrolled Total tpy	Baghouse Efficiency ²	Controlled Fly Ash Ib/hr	Controlled Fly Ash TPY	HAP?	Total HAP Fly Ash (One Unit) TPY	Total HAP Fly Ash (Four Units) TPY
luminum	AI	69.00	57.50	15.40	56.21	99.0%	0.154	0.562	No		
Arsenic	As	14.25	1.97	3.18	1.93	99.0%	0.032	0.019	Yes	0.019	0.077
Beryllium	Be	2.25	0.51	0.50	0.50	99.0%	0.005	0.005	Yes	0.005	0.020
Cadmium	Cd	3.00	0.56	0.67	0.55	99.0%	0.007	0.005	Yes	0.005	0.022
Calcium	Ca	28.50	23.75	6.36	23.22	99.0%	0.064	0.232	No		
Chlorine ³	CI	1,189.50	244.82	272.96	239.33	95.0%	13.648	11.966	Yes	11.966	47.866
Chromium	Cr	98.13	10.70	21.90	10.46	99.0%	0.219	0.105	Yes	0.105	0.418
Copper	Cu	5.25	4.38	1.17	4.28	99.0%	0.012	0.043	No		
·luorine ⁴	F	100.50	22.50	23.61	22.00	95.0%	1.181	1.100	Yes	1.100	4.399
ron	Fe	375.00	203.75	83.70	199.18	99.0%	0.837	1.992	No		
ead	Pb	18.00	2.63	4.02	2.57	99.0%	0.040	0.026	No		
/lagnesium	Mg	9.00	7.50	2.01	7.33	99.0%	0.020	0.073	No		
/anganese	Mn	945.00	12.00	210.91	11.73	99.0%	2.109	0.117	Yes	0.117	0.469
/ercury ⁵	Hg						0.009	0.040	Yes	0.040	0.162
lickel	Ni	880.50	383.86	196.52	375.25	99.0%	1.965	3.752	Yes	3.752	15.010
otassium	К	42.00	35.00	9.37	34.21	99.0%	0.094	0.342	No		
Selenium	Se	397.50	0.98	88.72	0.96	99.0%	0.887	0.010	Yes	0.010	0.038
Silicon	Si	25.50	65.63	5.69	64.16	99.0%	0.057	0.642	No		
Sodium	Na	97.50	81.25	21.76	79.43	99.0%	0.218	0.794	No		
itanium	Ti	1.50	1.25	0.33	1.22	99.0%	0.003	0.012	No		
/anadium	V	4,200.00	1,771.94	937.39	1,732.19	99.0%	9.374	17.322	No		
IOTES:	mated sources	listed below							Individual HAP Total HAP	11.97 17.12	47.87

Table A-9. CFB Cold Start-up Sequence for CFB Las Brisas Energy Center, LLC

Startup time (hrs)	1	2	3	4	5	6	7	8	9	10	11	12	NOTES
Main steam flow (%MCR)	0%	0%	0%	0%	0%	0%	25%	50%	60%	75%	75%	100%	Ratio calculated based on total
	270	270	270	270	2.0	270	0		2270				heat input.
Petcoke flow (pph)	0	0	0	0	0	0	0	55,797	111,594	133,913	167,391	223,188	Maximum coke firing rate from
× • • •													short-term emission calcs.
Petcoke S content (%)	NA	NA	NA	NA	NA	NA	8%	8%	8%	8%	8%	8%	Petcoke sulfur content (%) from
													short-term emission calcs.
Petcoke CI content (%)	NA	NA	NA	NA	NA	NA	0.12%	0.12%	0.12%	0.12%	0.12%	0.12%	CI content from short-term
													emission calcs.
Petcoke F content (%)	NA	NA	NA	NA	NA	NA	0.0101%	0.0101%	0.0101%	0.0101%	0.0101%	0.01%	F content from short-term
. ,													emission calcs.
Petcoke fired heat (MMBtu/hr)	0	0	0	0	0	0	0	770	1,540	1,848	2,310	3,080.0	Maximum heat input from short-
· · · · ·											-		term emission cals.
Gas heat input (MMBtu/hr)	154	462	770	924	924	924	924	426	0	0	0	0	
Total heat input (MMBtu/hr)	154	462	770	924	924	924	924	1,196	1,540	1,848	2,310	3,080	Calculated as the sum of petcoke
, ,											-		and gas MMBtu/hr.
Bed temperature (degrees F)	217	383	533	700	833	1,000	1,167	1,400	1,650	1,650	1,650	1,650.0	
Stack exit flow (scfm)	NA	NA	NA	NA	NA	NA	NA	NA	NA	786,963	983,704	1,311,606	
SO2 Removal Efficiency - (%)	0%	0%	0%	0%	0%	0%	40%	45%	98.0%	98.0%	98.0%	98.0%	
H2SO4 Removal Efficiency (%)	0%	0%	0%	0%	0%	0%	35%	40%	90%	90%	90%	90%	
HCL/HF Removal Efficiency (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	95%	95%	95%	No acid gas scrubbing till hour 10.
, , ,													
NOx Emissions (Ib/MMBtu)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.180	0.180	0.1	0.1	0.10	AP-42 Max. of natural gas or
· · · · · · · · · · · · · · · · · · ·													propane; max at full load is long-
													term BACT limit:
SO2 Emissions (lb/MMBtu)	6E-04	6E-04	6E-04	0.0006	0.0006	0.0006	0.0006	4.106	0.232	0.232	0.232	0.232	AP-42 for natural gas: max from
													short-term spreadsheet
PM/PM10 Emissions (lb/MMBtu)	0.0077	0.0077	0.0077	0.0077	0.0077	0.0077	0.008	0.041	0.059	0.0590	0.0590	0.0590	AP-42 Max. of natural gas or
, , , , , , , , , , , , , , , , , , ,													propane; max from short-term
													spreadsheet
CO Emissions (lb/MMBtu)	0.0835	0.0835	0.0835	0.0835	0.0835	0.0835	0.084	0.180	0.180	0.15	0.15	0.15	AP-42 Max. of natural gas or
, , , , , , , , , , , , , , , , , , ,													propane; max from short-term
													spreadsheet
VOC Emissions (lb/MMBtu)	0.0055	0.0055	0.0055	0.0055	0.0055	0.0055	0.006	0.005	0.005	0.005	0.005	0.005	AP-42 for natural gas; max from
· · · · ·													short-term spreadsheet
Lead Emissions (lb/MMBtu)	0	0	0	0	0	0	0.00E+00	8.40E-06	1.30E-05	1.30E-05	1.30E-05	1.30E-05	max from trace comp. calcs.
Fluoride Emissions (lb/MMBtu)	0	0	0	0	0	0	0.00E+00	4.94E-03	7.67E-03	3.83E-04	3.83E-04	3.83E-04	max from trace comp. calcs.
H2SO4 Emissions (lb/MMBtu)	0	0	0	0	0	0	0.286	0.264	0.044	0.044	0.044	0.044	max from short-term spreadsheet
· /													
HCI Emissions (lb/MMBtu)	0	0	0	0	0	0	0.00E+00	5.71E-02	8.86E-02	4.43E-03	4.43E-03	4.43E-03	max from trace comp. calcs.
Hg Emissions (lb/MMBtu)	0	0	0	0	0	0	0.00E+00	1.93E-06	3.00E-06	3.00E-06	3.00E-06	3.00E-06	max from trace comp. calcs.
													Calculated based on max lb/hr.
Ammonia (ppm)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.3	9.3	9.3	max from short-term spreadsheet
NOx Emissions (lb/hr)	15.40	46.20	77.00	92.40	92.40	92.40	92.40	215.28	277.20	184.80	231.00	308.00	TABLE 1(A) = 308.00
SO2 Emissions (lb/hr)	0.09	0.28	0.46	0.55	0.55	0.55	0.55	4,910.48	357.13	428.55	535.69	714.25	TABLE 1(A) = 4,910.48
PM/PM10 Emissions (lb/hr)	1.18	3.54	5.90	7.08	7.08	7.08	7.08	48.69	90.86	109.03	136.29	181.72	TABLE 1(A) = 181.72
CO Emissions (lb/hr)	12.86	38.59	64.31	77.18	77.18	77.18	77.18	215.28	277.20	277.20	346.50	462.00	TABLE 1(A) = 462.00
VOC Emissions (lb/hr)	0.85	2.56	4.27	5.12	5.12	5.12	5.12	6.21	7.70	9.24	11.55	15.40	TABLE 1(A) = 15.40
Lead Emissions (lb/hr)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.02	0.03	0.04	TABLE 1(A) = 0.04
Fluoride Emissions (lb/hr)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.90	11.81	0.71	0.89	1.18	TABLE 1(A) = 11.81
H2SO4 Emissions (lb/hr)	0.00	0.00	0.00	0.00	0.00	0.00	264.26	315.74	67.76	81.31	101.64	135.52	TABLE 1(A) = 315.74
HCI Emissions (lb/hr)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	68.24	136.48	8.19	10.24	13.65	TABLE 1(A) = 136.48
Hg Emissions (lb/hr)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	TABLE 1(A) = 0.01
Ammonia Emissions (lb/hr)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	19.25	24.06	32.08	TABLE 1(A) = 32.08
Natural gas emission factors from A	AP-42 Table	1.4-1 for Lar	ge Wall-Fire	d Boilers Co	ntrolled Low	Nox Burners	s and Table 1	.4-2.					
Shaded cells represent the maximu	um short-tern	n emissions	for that conta	aminant.									

Table A-10. Piping Equipment Fugitive Emission Calculations Las Brisas Energy Center, LLC

			Stream	Component	SOCMI w/o	Control	9/	NH ₃ Emis	sion Rates
EPN	FIN	Source Type	Stream	Count	C2	Efficiency	70 Ammonia	Hourly	Annual
			State		(lb/hr/comp.)	(%)	Anniona	(lb/hr)	(tpy)
		Valves	Gas/Vapor	200	0.0089	97%	100%	0.053	0.234
FUG-NH3A	FUG-NH3A	Relief Valves	Gas/Vapor	1	0.2293	97%	100%	0.007	0.030
		Flanges	Gas/Vapor	500	0.0029	97%	100%	0.044	0.191
Total									
						l otal:		0.10	0.45
			_	Component	SOCMI w/o	Control		NH₃ Emis	sion Rates
EPN	FIN	Source Type	Stream	Count	C2	Efficiency	%	Hourly	Annual
			State		(lb/hr/comp.)	(%)	Ammonia	(lb/hr)	(tpv)
		Valves	Gas/Vapor	200	0.0089	97%	100%	0.053	0 234
FUG-NH3B	FUG-NH3B	Relief Valves	Gas/Vapor	1	0 2293	97%	100%	0.007	0.030
		Flanges	Gas/Vapor	500	0.0029	97%	100%	0.044	0.191
L	<u>I</u>	liungee	oud, rupoi	000	0.0020	0170	10070	0.011	0.101
						Total:		0.10	0.45
				Component	SOCMI w/o	Control		VOC Emis	sion Rates
EDN	FIN	Source Type	Stream	Count	C2	Efficiency	%	Hourly	Annual
		Source Type	State	Count	(lb/br/comp)	(%)	VOC	(lb/br)	Annuar (tpv)
		Valves	GasMapor	100	0.0080	(70)	110/	0.102	(ipy)
EUG-NG	FUG-NG	Valves	Gas/Vapor	100	0.0009	07%	100%	0.102	0.445
100-110	100-100	Flances	Gas/Vapor	250	0.2295	0%	11%	0.007	0.030
		i langes	043/ 1400	2.50	0.0023	070	1170	0.005	0.000
						Total		0.19	0.84
						Total.		0.19	0.04
		[1	Component	SOCMU	Control	1	VOC Emic	cion Botoc
EDN	EIN	Source Turne	Stream	Component		Control	%	VOC Emis	SION Rates
EPN	FIN	Source Type	State	Count	C2	Enciency	VOC	Houriy	Annual
		Values	Cashianan	05	(ib/nr/comp.)	(76)	4000/	(ID/NF)	(tpy)
		Valves	Gas/vapor	25	0.0089	0%	100%	0.223	0.975
FUG-FROFT	FUG-FROFT	Flongoo	Gas/Vapor	62	0.2293	97%	100%	0.007	0.030
	L	i langes	Gas/vapoi	03	0.0029	0 78	100 /6	0.105	0.000
						Totali		0.44	4.90
						Total:		0.41	1.60
		1			000111-016		1		
501			Stream	Component	SOCIVII W/O	Control	%	VOC Emis	sion Rates
EPN	FIN	Source Type	State	Count	C2	Efficiency	VOC	Hourly	Annual
					(lb/hr/comp.)	(%)		(lb/hr)	(tpy)
		Valves	Gas/Vapor	25	0.0089	0%	100%	0.222	0.974
FUG-PROP2	FUG-PROP2	Relief Valves	Gas/Vapor	1	0.2293	97%	100%	0.007	0.030
		Flanges	Gas/Vapor	63	0.0029	0%	100%	0.183	0.800
						· · · ·			I
						I otal:		0.41	1.80
Notes:									
[1] Emission fa	actors were tak	en from TCEQ's	Guidance Do	ocuments for "E	Equipment Leak	Fugitives".			
[2] Control effi	ciency claimed	for weekly Audi	o Visual Olfa	ctory (AVO) pro	ogram.	-			
		-							
Sample Calco	ulations:								
Hourly Emissi	ons for Valves :	=	200 x	0.0089 x	3.00 %	100.00 %	=	0.053 lb/hr	
					I				
Annual Emiss	ions for Valves	=		0.053 lb	8760 hr	1 ton	=	0.234 tpy	
					yr	2000 lb			

Table A-11. Fabric Filter Emission Calculations Las Brisas Energy Center, LLC

EPN	FIN	Source	Est. Baghouse Flowrate SCFM	Hours of Annual Operation	Exhaust Conc. Grains/dscf	Particulate (Pl	Emissions M ₁₀₎	
SILO-FA1	SILO-FA1	Fly Ash Silo No. 1	7,300	8,760	0.01	0.626	2.741	
SILO-FA2	SILO-FA2	Fly Ash Silo No. 2	7,300	8,760	0.01	0.626	2.741	
SILO-FA3	SILO-FA3	Fly Ash Silo No. 3	7,300	8,760	0.01	0.626	2.741	
SILO-FA4	SILO-FA4	Fly Ash Silo No. 4	7,300	8,760	0.01	0.626	2.741	
SILO-BA1	SILO-BA1	Bottom Ash Silo No. 1	5,520	8,760	0.01	0.473	2.072	
SILO-BA2	SILO-BA2	Bottom Ash Silo No. 2	5,520	8,760	0.01	0.473	2.072	
SILO-BA3	SILO-BA3	Bottom Ash Silo No. 3	5,520	8,760	0.01	0.473	2.072	
SILO-BA4	SILO-BA4	Bottom Ash Silo No. 4	5,520	8,760	0.01	0.473	2.072	
SILO-COKE1	SILO-COKE1	Coke Silo No.1	33,000	5,782	0.01	2.829	8.177	
SILO-COKE2	SILO-COKE2	Coke Silo No.2	33,000	5,782	0.01	2.829	8.177	
SILO-COKE3	SILO-COKE3	Coke Silo No.3	33,000	5,782	0.01	2.829	8.177	
SILO-COKE4	SILO-COKE4	Coke Silo No.4	33,000	5,782	0.01	2.829	8.177	
SILO-COKE5	SILO-COKE5	Coke Silo No.5	33,000	5,782	0.01	2.829	8.177	
SILO-COKE6	SILO-COKE6	Coke Silo No.6	33,000	5,782	0.01	2.829	8.177	
SILO-COKE7	SILO-COKE7	Coke Silo No.7	33,000	5,782	0.01	2.829	8.177	
SILO-COKE8	SILO-COKE8	Coke Silo No.8	33,000	5,782	0.01	2.829	8.177	
SILO-LMST1	SILO-LMST1	Limestone Bunker No. 1	800	3,000	0.01	0.069	0.103	
SILO-LMST2	SILO-LMST2	Limestone Bunker No. 2	800	3,000	0.01	0.069	0.103	
SILO-LMST3	SILO-LMST3	Limestone Bunker No. 3	800	3,000	0.01	0.069	0.103	
SILO-LMST4	SILO-LMST4	Limestone Bunker No. 4	800	3,000	0.01	0.069	0.103	
SILO-ACI1	SILO-ACI1	Carbon for ACI Silo No. 1	1600	3,000	0.01	0.137	0.206	
SILO-ACI2	SILO-ACI2	Carbon for ACI Silo No. 2	1600	3,000	0.01	0.137	0.206	
SILO-ACI3	SILO-ACI3	Carbon for ACI Silo No. 3	1600	3,000	0.01	0.137	0.206	
SILO-ACI4	SILO-ACI4	Carbon for ACI Silo No. 4	1600	3,000	0.01	0.137	0.206	
SILO-LIME1	SILO-LIME1	Lime Silo No. 1	1600	3,000	0.01	0.137	0.206	
SILO-LIME2	SILO-LIME2	Lime Silo No. 2	1600	3,000	0.01	0.137	0.206	
SILO-LIME3	SILO-LIME3	Lime Silo No. 3	1600	3,000	0.01	0.137	0.206	
SILO-LIME4	SILO-LIME4	Lime Silo No. 4	1600	3,000	0.01	0.137	0.206	
SILO-LIME5	SILO-LIME5	Lime Silo No. 5	1600	3,000	0.01	0.137	0.206	
SILO-LIME6	SILO-LIME6	Lime Silo No. 6	1600	3,000	0.01	0.137	0.206	
SILO-LIME7	SILO-LIME7	Lime Silo No. 7	1600	3,000	0.01	0.137	0.206	
SILO-LIME8	SILO-LIME8	Lime Silo No. 8	1600	3,000	0.01	0.137	0.206	
BIN-SAND1	BIN-SAND1	Unit 1 Sand Day Bin	500	3,000	0.01	0.043	0.064	
BIN-SAND2	BIN-SAND2	Unit 2 Sand Day Bin	500	3,000	0.01	0.043	0.064	
BIN-SAND3	BIN-SAND3	Unit 3 Sand Day Bin	500	3,000	0.01	0.043	0.064	
BIN-SAND4	BIN-SAND4	Unit 4 Sand Day Bin	500	3,000	0.01	0.043	0.064	
WT-LIME	WT-LIME	Water Treatment Lime Silo	1,000	3,000	0.01	0.086	0.129	
WT-SODA	WT-SODA	Water Treatment Soda Ash Silo	1,000	3,000	0.01	0.086	0.129	
					Total:	29.29	88.06	
Assumptions: All PM from baghouses = PM10 Notes: [1] Guranteed Emission Rate, Fan Capacity and Annual Operation are based on preliminary design. Sample Calculations:								
Maximum Harri		0.01 or	7200 oct	60 min	1 lb	-	0 62 16/64	
waximum Hourl	y 101 SILU-FA1 =	UUT gr dscf	1300 SCT	ou miñ hr	7000 ar	=	0.03 id/hr	
			т I		. 500 gi			
Annua	al for SILO-FA1 =	0.626 lb	8760 hr	1 ton	=	2.74 tpy		
		nr	yr	2000 lb				

NOTES:

1. The limestone bunkers will be have either one fabric filter at 800 cfm or two fabric filters at 400 cfm each.

Table A-12. Cooling Tower Emission CalculationsLas Brisas Energy Center, LLC

Cooling Tower I Annual C TDS in Circulati % Mass of	Data Dperating Hours Drift % ng Water (ppm) drift with PM10	8760 0.0005% 16000 2.44%	Note: Interpolated fi	rom Table Be	ow			
				PM/F	PM10	PM10		
EPN	FIN	Name	Cooling Water Rate (gpm)	Emissions Rate Ib/hr	Emissions Rate ton/yr	Emissions Rate Ib/hr	Emissions Rate ton/yr	
CTWR1 CTWR2	CTWR1 CTWR2	Cooling Tower #1 Cooling Tower #2	300,000 300,000	12.01 12.01	52.60 52.60	0.29 0.29	1.29 1.29	
/I = Recirc. Rat	te,gpm * Drift% * PM10 Partic	8.34 lb/gal * 60 min/hr [,] le Size Calculation	* TDS ppm/1000000)				
	Турі	cal Cooling Tower Dro	plet Size	Partic	le Size			
	(Dd, microns)	(% Mass Sma	aller Than)	(Dp, m	icrons)			
	10		0.000		1.937			
	20		0.196		3.875			
	30		0.226		5.812			
	40		0.514		7.750			
	50 60		5 702		9.007			
	70		21.348		13.562			
	90		49.812		17.437			
	110		70.509		21.312			
	130		82.023		25.187			
	150		88.000		29.062			
	210		91 032		40 687			
	240		92.469		46.499			
	270		94.091		52.311			
	300		94.689		58.124			
	350		96.288		67.811			
	400		97.011		//.498 87 186			
	500		99.040		96.873			
	600		100.000		116.248			
	Dp = Dd * [(pd/	pp) * (TDS) / 1,000,000)] ^ 1/3					
	where:	Density of Water (pd)= Denisty of TDS (pp) =	1 2.2					

Table A-13. Emergency Diesel Generator (EDG) Emissions Las Brisas Energy Center, LLC Emission

Description: Two 1,600 kW diesel-fired emergency generators Operating Parameters for Each Generator Parameter Value Units Diesel Generator Input: 1.722 kW kW Diesel Generator Output: 160 Assumed Generator Efficiency [1]: 92.9% 6,997 hp Diesel Engine Input: Diesel Engine Input: 17.80 MMBtu/hr Diesel Engine Output: 2,309 hp Diesel Engine Output: 5.87 MMBtu/hr Assumed Diesel Engine Efficiency^[1]: 33% Engine Fuel Consumption: 7,709 Btu/hp-hr Exhaust Gas Temperature: 855 °F Heating Value for No. 2 Fuel Oil: 141,00 Btu/gal Maximum Fuel Firing Rate for the Diesel Generator: 126.2 gal/hr Maximum Fuel Firing Rate for the Diesel Generator: 925.0 lb/hr Maximum Annual Hours of Operation^[2] 500 hour/year

Emission Factors ^[3]								
SO ₂	NO _x	PM-10	СО	VOC	H ₂ SO ₄			
lb/MMBtu Heat Input	(g/hp-hr) output	(g/hp-hr) output	(g/hp-hr) output	lb/MMBtu Heat Input	Ib/MMBtu Heat Input			
0.026	4.77	0.12	2.61	0.0819	0.002			

EDN	EIN	Description	Hourly Emissions (lb/hr)							
EFN	FIN	Description	со	NOx	PM-10	VOC	SO ₂	H_2SO_4		
ENG-EG1	ENG-EG1	Diesel-Fired Emergency Generator 1	13.30	24.30	0.61	1.46	0.46	0.04		
ENG-EG2	ENG-EG2	Diesel-Fired Emergency Generator 2	13.30	24.30	0.61	1.46	0.46	0.04		
				Anr	ual Emiss	ions (tpy)				
ENG-EG1	ENG-EG1	Diesel-Fired Emergency Generator 1	3.30	6.10	0.15	0.37	0.12	0.009		
ENG-EG2	ENG-EG2	Diesel-Fired Emergency Generator 2	3.30	6.10	0.15	0.37	0.12	0.009		

SO ₂ Emission Factor Calculation								
Parameter	Value	Unit						
Sulfur Content of Fuel	0.05%	% (max)						
Fuel Oil Heating Value	141,000	Btu/gal						
Fuel Oil Density	7.33	lb/gal						
Fuel Oil Heating Value	19,236	Btu/lb						
Fuel Oil Firing Rate	925	lb oil/hr						
Sulfur into Engine	0.46	lb S/hr						
SO ₂ Emission Factor	0.026	lb SO2/MMBtu						
SO ₂ Emission Factor	3.67	lb SO ₂ /1,000 gal						

Stack Data

Parameter	Value	Unit
Height	20	ft. above-ground level (estimate)
Diameter	20	inches
Exhaust Temperature	855	°F
Exhaust Velocity	92.0	ft/sec

Notes:

1] Efficiencies for the engine are estimated from typical vendor data.

2] Annual emissions were calculated based on a maximum firing rate of 500 hours per year.

3] Emission factors for NOx, CO, and PM10 were based on the compression ignition internal combustion engine (CI ICE) NSPS

(71 FR 39152, July 11, 2006).

The NOx emission rate was based on the NSPS standard for NOx+NMHC.

The VOC emission factor was taken from AP-42 Table 3.4-1, Gaseous Emission Factors for Large Stationary Diesel Engines.

The SO2 emission factor was calculated based on a maximum fuel sulfur content of 0.05%.

The H2SO4 emission factor was calculated assuming 5% SO2 to SO3 conversion during combustion.

CO Hourly Emissions for EP-ENG-EG1 =	2.61 g	2309 hp	lb	=	13.30 lb/hr	
	hp-hr		453.6 g	_		
CO Annual Emissions for EP-ENG-EG1 =	13.3 lb	500 hr	1 ton	=	3.30 tpy	
	hr	yr	2000 lb	_		

Table A-14. Diesel-Fired Fire Water Pump Emissions

Las Brisas Energy Center, LLC

Parameter	Value	Units
Diesel Engine Output:	360	hp
Diesel Engine Output:	0.92	MMBtu/hr
Assumed Diesel engine efficiency ^[1] :	33%	
Diesel Engine Input:	1,090.9	hp
Diesel Engine Input:	2.78	MMBtu/hr
Engine Fuel Consumption:	7,709	Btu/hp-hr
Exhaust Gas Temperature:	845	°F
Heating Value for No. 2 Fuel Oil:	141,000	Btu/gal
Maximum Fuel Firing Rate for the Engine:	19.7	gal/hr
Maximum Fuel Firing Rate for the Engine:	144	lb/hr
Maximum Annual Hours of Operation ^[2] :	500	hours/year

	Emission Factors ^[3]						
SO ₂	NO _x	D _x CO PM-10 VOC H ₂ :					
lb/MMBtu Heat Input	g/hp-hr (output)	g/hp-hr (output)	g/hp-hr (output)	lb/MMBtu Heat Input	Ib/MMBtu Heat Input		
0.026	3	2.60	0.15	0.00247	0.002		

EDN	EIN	Ηοι	Irly Emiss	ions (lb/h	nr)			
CFIN	FIN	Description	СО	NOx	PM-10	VOC	SO ₂	H_2SO_4
ENG-FWMAIN	ENG-FWMAIN	Main Diesel-Fired Fire Water Pump	2.06	2.38	0.12	0.89	0.07	0.01
				An	nual Emis	sions (tp	y)	
ENG-FWMAIN	ENG-FWMAIN	Main Diesel-Fired Fire Water Pump	0.52	0.60	0.03	0.22	0.02	0.002

SO ₂ Emission Factor		
Parameter	Value	Unit
Sulfur Content of Fuel	0.05%	% (max)
Fuel Oil Heating Value	141,000	Btu/gal
Fuel Oil Density	7.33	lb/gal
Fuel Oil Heating Value	19,236	Btu/lb
Fuel Oil Firing Rate	144	lb oil / hr
Sulfur into Engine	0.07	lb S / hr
SO ₂ Emission Factor	0.026	lb SO2/MMBtu
SO ₂ Emission Factor	3.67	lb SO2/1,000 gal

Stack Data (Preliminary)

Parameter	Value	Unit
Height	12	ft. above-ground level (approx.)
Diameter	3	inches
Exhaust Temperature	845	^o F (data sheet for recently purchased FWP)
Exhaust Velocity	135.0	ft/sec. (data sheet for recently purchased FWP)

Notes:

1] Engine efficiencies were estimated from typical vendor data.

2] Annual emissions were calculated based on a maximum firing rate of 500 hours per year.

3] Emission factors for NOx, CO, and PM10 were based on the compression ignition internal combustion engine (CI ICE) NSPS (71 FR 39152, July 11, 2006).

The NOx emission rate was based on the NSPS standard for NOx+NMHC.

The VOC emission factor was taken from AP-42 Table 3.3-1, Emission Factors for Gasoline and Diesel Industrial Engines. The SO_2 emission factor was calculated based on a maximum fuel sulfur content of 0.05%.

The H₂SO₄ emission factor was calculated assuming 5% SO₂ to SO₃ conversion during combustion.

CO Hourly Emissions for EP-ENG-FWMAIN =	2.6 g hp-hr	360 hp	lb 453.6 g	=	2.06 lb/hr
CO Annual Emissions for EP-ENG-FWMAIN =	2.06 lb hr	500 hr yr	1 ton 2000 lb	=	0.52 tpy

Table A-15. Diesel-Fired Fire Water Booster Pump Emissions Las Brisas Energy Center, LLC

Operating Parameters for Each Generator						
	P	arameter		Value	Units	
Diesel Engine	Output:			100	hp	
Diesel Engine	Output:			0.25	MMBtu/hr	
Assumed Dies	el engine efficie	ency ^[1] :		33%		
Diesel Engine	Input:			303.0	hp	
Diesel Engine	Input:			0.77	MMBtu/hr	
Engine Fuel C	7,709	Btu/hp-hr				
Exhaust Gas 7	845	°F				
Heating Value	141,000	Btu/gal				
Maximum Fue	5.5	gal/hr				
Maximum Fue	I Firing Rate for	the Engine:		40	lb/hr	
Maximum Ann	ual Hours of Op	peration ^[2] :		500	hours/year	
[Emissio	n Eactors ^[3]			
SO	NO.	CO	PM-10	VOC	H ₂ SO4	
Ib/MMBtu Heat Input	g/hp-hr (output)	g/hp-hr (output)	g/hp-hr (output)	Ib/MMBtu Heat Input	Ib/MMBtu Heat Input	
0.026	3	2.60	0.15	0.00247	0.002	

EDN	EIN	Description		Hou	rly Emiss	ions (lb/h	nr)	
LFIN	FIN	Description	со	NOx	PM-10	VOC	SO ₂	H_2SO_4
ENG-FWB1	ENG-FWB1	Diesel-Fired Fire Water Booster Pump 1	0.57	0.66	0.03	0.25	0.02	0.002
ENG-FWB2	ENG-FWB2	Diesel-Fired Fire Water Booster Pump 2	0.57	0.66	0.03	0.25	0.02	0.002
ENG-FWB3	ENG-FWB3	Diesel-Fired Fire Water Booster Pump 3	0.57	0.66	0.03	0.25	0.02	0.002
ENG-FWB4	ENG-FWB4	Diesel-Fired Fire Water Booster Pump 4	0.57	0.66	0.03	0.25	0.02	0.002
			Annual Emissions (tpy)					
ENG-FWB1	ENG-FWB1	Diesel-Fired Fire Water Booster Pump 1	0.14	0.17	0.01	0.06	0.01	0.001
ENG-FWB2	ENG-FWB2	Diesel-Fired Fire Water Booster Pump 2	0.14	0.17	0.01	0.06	0.01	0.001
ENG-FWB3	ENG-FWB3	Diesel-Fired Fire Water Booster Pump 3	0.14	0.17	0.01	0.06	0.01	0.001
ENG-FWB4	ENG-FWB4	Diesel-Fired Fire Water Booster Pump 4	0.14	0.17	0.01	0.06	0.01	0.001

SO ₂ Emission Factor		
Parameter	Value	Unit
Sulfur Content of Fuel	0.05%	% (max)
Fuel Oil Heating Value	141,000	Btu/gal
Fuel Oil Density	7.33	lb/gal
Fuel Oil Heating Value	19,236	Btu/lb
Fuel Oil Firing Rate	40	lb oil / hr
Sulfur into Engine	0.02	lb S / hr
SO ₂ Emission Factor	0.026	lb SO2/MMBtu
SO ₂ Emission Factor	3.67	lb SO2/1,000 gal

Stack Data (Preliminary)

Parameter	Value	Unit
Height	12	ft. above-ground level (approx.)
Diameter	3.3	inches
Exhaust Temperature	845	°F
Exhaust Velocity	90.0	ft/sec.

Notes:

- 1] Engine efficiencies were estimated from typical vendor data.
- Annual emissions were calculated based on a maximum firing rate of 500 hours per year.
 Emission factors for NOx, CO, and PM10 were based on the compression ignition internal combustion engine (CI ICE) NSPS (71 FR 39152, July 11, 2006).
 - The NOx emission rate was based on the NSPS standard for NOx+NMHC.
 - The VOC emission factor was taken from AP-42 Table 3.3-1, Emission Factors for Gasoline and Diesel Industrial Engines.
 - The SO_2 emission factor was calculated based on a maximum fuel sulfur content of 0.05%.
 - The $\rm H_2SO_4$ emission factor was calculated assuming 5% $\rm SO_2$ to $\rm SO_3$ conversion during combustion.

CO Hourly Emissions for EP-ENG-FWB1 =	2.6 g hp-hr	100 hp	lb 453.6 g	=	0.57 lb/hr
CO Annual Emissions for EP-ENG-FWB1 =	0.57 lb	500 hr	1 ton	=	0.14 tpy
	hr	yr	2000 lb		

Table A-16. Diesel-Fired Emergency Boiler Feed Water Pump Emissions Las Brisas Energy Center, LLC

Operating Parameters for Each Generator										
epot unig run	Parameter									
Diesel Engine C	Dutput:			2000	hp					
Diesel Engine C	Dutput:			5.09	MMBtu/hr					
Assumed Diese	l engine efficien	ICY ^[1] :		33%						
Diesel Engine I	nput:			6,060.6	hp					
Diesel Engine I	nput:			15.42	MMBtu/hr					
Engine Fuel Co	nsumption:			7,709	Btu/hp-hr					
Exhaust Gas Te	845	°F								
Heating Value f	141,000	Btu/gal								
Maximum Fuel	Firing Rate for t	he Engine:		109.3	gal/hr					
Maximum Fuel	Firing Rate for t	he Engine:		802	lb/hr					
Maximum Annu	al Hours of Ope	eration ^[2] :		500	hours/year					
r.			(9)							
		Emissior	n Factors 181							
SO ₂	NOx	СО	PM-10	VOC	H ₂ SO ₄					
Ib/MMBtu Heat Input	g/hp-hr (output)	g/hp-hr (output)	g/hp-hr (output)	Ib/MMBtu Heat Input	Ib/MMBtu Heat Input					
0.026	3	2.60	0.15	0.00247	0.002					

EDN	EIN Description Hourly Emissions (lb/hr)						nr)	
EPN	FIN	Description	CO	NOx	PM-10	VOC	SO ₂	H_2SO_4
ENG-BFWP1	ENG-BFWP1	Diesel-Fired Boiler Feed Water Pump 1	11.46	13.23	0.66	4.94	0.40	0.03
ENG-BFWP2	ENG-BFWP2	Diesel-Fired Boiler Feed Water Pump 2	11.46	13.23	0.66	4.94	0.40	0.03
ENG-BFWP3	ENG-BFWP3	Diesel-Fired Boiler Feed Water Pump 3	11.46	13.23	0.66	4.94	0.40	0.03
ENG-BFWP4	ENG-BFWP4	Diesel-Fired Boiler Feed Water Pump 4	11.46	13.23	0.66	4.94	0.40	0.03
			Annual Emissions (tpy)					
ENG-BFWP1	ENG-BFWP1	Diesel-Fired Boiler Feed Water Pump 1	2.87	3.31	0.17	1.24	0.10	0.008
ENG-BFWP2	ENG-BFWP2	Diesel-Fired Boiler Feed Water Pump 2	2.87	3.31	0.17	1.24	0.10	0.008
ENG-BFWP3	ENG-BFWP3	Diesel-Fired Boiler Feed Water Pump 3	2.87	3.31	0.17	1.24	0.10	0.008
ENG-BFWP4	ENG-BFWP4	Diesel-Fired Boiler Feed Water Pump 4	2.87	3.31	0.17	1.24	0.10	0.008

SO ₂ Emission Factor		
Parameter	Value	Unit
Sulfur Content of Fuel	0.05%	% (max)
Fuel Oil Heating Value	141,000	Btu/gal
Fuel Oil Density	7.33	lb/gal
Fuel Oil Heating Value	19,236	Btu/lb
Fuel Oil Firing Rate	802	lb oil / hr
Sulfur into Engine	0.40	lb S / hr
SO ₂ Emission Factor	0.026	lb SO2/MMBtu
SO ₂ Emission Factor	3.67	lb SO2/1,000 gal

Stack Data (Preliminary)

Parameter	Value	Unit
Height	30	ft. above-ground level (approx.)
Diameter	20.0	inches
Exhaust Temperature	845	°F
Exhaust Velocity	90.0	ft/sec.

Notes:

- 1] Engine efficiencies were estimated from typical vendor data.
- 2] Annual emissions were calculated based on a maximum firing rate of 500 hours per year.
- 3] Emission factors for NOx, CO, and PM10 were based on the compression ignition internal combustion engine (CI ICE) NSPS (71 FR 39152, July 11, 2006).
 - The NOx emission rate was based on the NSPS standard for NOx+NMHC.
 - The VOC emission factor was taken from AP-42 Table 3.3-1, Emission Factors for Gasoline and Diesel Industrial Engines.

The SO₂ emission factor was calculated based on a maximum fuel sulfur content of 0.05%.

The H_2SO_4 emission factor was calculated assuming 5% SO_2 to SO_3 conversion during combustion.

CO Hourly Emissions for EP-ENG-BFWP1 =	2.6 g	2000 hp	lb	=	11.46 lb/hr
	hp-hr	l	453.6 g		
CO Annual Emissions for EP-ENG-BFWP1 =	11.46 lb	500 hr	1 ton	=	2.87 tpy
	hr	yr	2000 lb		

Table A-17. Storage Tank Emission Calculations Las Brisas Energy Center, LLC

Tank Service		FPN	FIN	Tank Name		Pollutant	Emission Rate			
		2.11						1 onutant	lb/hr	tpy
Main Diesel-Fired Fire Water Pump		TNK-FWMAIN	TNK-FWMAIN	Diesel Tank for M	ain Diesel-F	ired Fire Water	⁻ Pump	VOC	0.010	0.0002
Diesel-Fired Emergency Generator 1		TNK-EG1	TNK-EG1	Diesel Tank for E	mergency G	enerator 1		VOC	0.010	0.0001
Diesel-Fired Emergency Generator 2	_	TNK-EG2	TNK-EG2	Diesel Tank for E	mergency G	enerator 2		VOC	0.010	0.0001
Diesel-Fired Fire Water Booster Pump 1		TNK-FWB1	TNK-FWB1	Diesel Tank for Fi	re Water Bo	oster Pump 1		VOC	0.010	0.0003
Diesel-Fired Fire Water Booster Pump 2		TNK-FWB2	TNK-FWB2	Diesel Tank for Fi	re Water Bo	oster Pump 2		VOC	0.010	0.0003
Diesel-Fired Fire Water Booster Pump 3		TNK-FWB3	TNK-FWB3	Diesel Tank for Fi	re Water Bo	oster Pump 3		VOC	0.010	0.0003
Diesel-Fired File Water Booster Fump 4		TNK-FWB4	TNK-FWB4	Diesel Tank for B	niler Feed M	ater Pump 1		VOC	0.010	0.0003
Diesel-Fired Boiler Feed Water Pump 2		TNK-BFWP2	TNK-BFWP2	Diesel Tank for B	oiler Feed W	ater Pump 2		VOC	0.010	0.0004
Diesel-Fired Boiler Feed Water Pump 3		TNK-BFWP3	TNK-BFWP3	Diesel Tank for B	oiler Feed W	/ater Pump 3		VOC	0.010	0.0004
Diesel-Fired Boiler Feed Water Pump 4		TNK-BFWP4	TNK-BFWP4	Diesel Tank for B	oiler Feed W	/ater Pump 4		VOC	0.010	0.0004
								Total:	0.115	0.0032
Acid Storage Tank		TNK-ACID	TNK-ACID	Acid Storage Tan	k			H2SO4	0 162	0.003
Base Storage Tank		TNK-BASE	TNK-BASE	Base Storage Tar	ık			NaOH	0.069	0.001
Parameter Name & Variable		Units			\ 	/alue			N	otes
Tank Name			Diesel Storage Tank for Main Fire	Diesel Storage Tanks for Emergency	Diesel Storage Tanks for Booster	Diesel Storage Tank for Emergency Boiler Feed Water	Acid Storage	Base Storage		
			Water Pump	Generators	Pumps	Pumps	Tank	Tank		
Material		ļ	Diesel	Diesel	Diesel	Diesel	Sulfuric Acid	Sodium Hydroxide		
Туре	Ļ		Horizontal	Horizontal	Horizontal	Horizontal	Vertical	Vertical		
Throughput	Q	gal/yr	9,841	2,734	54,674	63,100	300,000	300,000	1	
Tank Height/Length	Hs	ft	4.6	4.6	4.6	4.6	16.0	16.0		
Average Liquid Height	HL	ft	2.3	2.3	2.3	2.3	8	8	H _S / 2	
Diameter	D	ft	3	3	3	3	8	8]	
Effective Diameter	De	ft	4.19	4.19	4.19	4.19	12.77	12.77		
Tank Liquid Volume	V _{LX}	ft3	33	33	33	33	804	804	(D/2)^2 * pi * H _S	
Tank Liquid Volume	T _{CG}	gal	243	243	243	243	6,016	6,016	VLX * 7.481	
Turnovers	N	Ű	40.46	11 24	224 78	259 42	49.87	49.87	5.614*Q / V _{LV}	
Maximum Fill Rate	FRm	gal/hr	243	243	243	243	6.016	6.016	LA LA	
Roof Slope	Sa	gai/m	0	0	0	0	0,010	0,010		
Tank Color/Shade	OR	1011	Aluminum	Aluminum	Aluminum	Aluminum	Aluminum	Aluminum		
Paint Solar Absorptance	a	-	Aluminum 0.39	Aluminum 0.39	Aluminum 0.39	Aluminum 0.39	Aluminum 0.39	Aluminum 0.39		
Daily Total Solar Insolation Factor	ŭ	Btu/ft ² .d	1448.00	1448.00	1448.00	1448.00	1448.00	1448.00		
Daily Novimum Ambiant Temperature	Т		91.0	91.0	91.0	91.0	91.0	91.0		
Daily Maximum Ambient Temperature		*F	81.0	81.0	81.0	81.0	81.0	81.0		
Daily Minimum Ambient Temperature	I _{AN}	۴	62.0	62.0	62.0	62.0	62.0	62.0		
Daily Ambient Temp. Change	DT_A	°R	19.000	19.000	19.000	19.000	19.000	19.000	T _{AX -} T _{AN}	
Daily Avg. Ambient Temperature	T _{AA}	٩R	531.170	531.170	531.170	531.170	531.170	531.170	((T _{AX} +459.67)+(T _{AN} +	459.67))/2
Liquid Bulk Temperature	Th	°R	532.510	532.510	532.510	532.510	532.510	532.510	ΤΔΔ + 6α -1	
Daily Avg. Liquid Surface Temp	Tu	٩R	536 382	536 382	536 382	536 382	536 382	536 382	0.44T+0.56+0.00	79(a*l)
Doily May Ava Lia Surf Tomp	т	۰. ۵D	E42 755	E42 755	E42 755	E42 755	E42 7EE	E42 7EE		(ui)
Daily Wax. Avg. Liq. Sun. Temp.		^r R	545.755	545.755	545.755	545.755	545.755	545.755		
Daily Min. Avg. Liq. Surf. Temp.	I _{LN}	°R	529.009	529.009	529.009	529.009	529.009	529.009	T _{LA} -0.25*DT _V	
Daily Vapor Temperature Range	DT_V	°R	29.492	29.492	29.492	29.492	29.492	29.492	0.72*DT _A +0.028*α*I	
Liquid Molecular Wt.	ML	lb/lb-mole	188	188	188	188	94	40		
Vapor Molecular Wt.	Mv	lb/lb-mole	130	130	130	130	94	40		
Reid Vanor Pressure	RVP	psi							1	
Slone	SI	°F/vol %		1		1			1	
C-C Vapor Pressure Equation Constant A	A	dimensionless	12.101	12.101	12.101	12.101			1	
C-C Vapor Pressure Equation Constant B	В	°R	8907.0	8907.0	8907.0	8907.0				
True Vapor Pressure @ T _{LA}	P_{VA}	psia @ T _{LA}	0.011	0.011	0.011	0.011	0.010	0.010		
True Vapor Pressure @ T _{I x}	P _{VX}	psia @ T _{LX}	0.014	0.014	0.014	0.014	0.012	0.012]	
True Vapor Pressure @ T.	P _{VN}	psia @ T _{LM}	0.009	0.009	0.009	0.009	0.008	0.008	1	
Vapor Pressure Function	P*	dimensionless	0.00038	0.00038	0.00038	0.00038	0.00034	0.00034	P.,,/P./(1+(1-(P.,,/P.))^0.5)^2
Daily Vapar Processo Para	DP.	ncio	0.00500	0.00509	0.00500	0.00509	0.00400	0.00400	P P	,, -
	- V- V	psid	0.00508	0.00508	0.00008	0.00508	0.00400	0.00400	1/2 * C * D - /C	
Roof Outage	H _{RO}	tt	0.00	0.00	0.00	0.00	0.00	0.00	1/3 " S _R " De/2	
Vapor Space Outage	H_{VO}	ft	1.50	1.50	1.50	1.50	8.00	8.00	D/2	
Working Loss Product Factor	K _E		0.055	0.055	0.055	0.055	0.055	0.055	$(DT_V/T_{LA}) + (DP_V/(P_A))$	·P _{VA}))
Vented Vapor Saturation Factor	Ks		1.00	1.00	1.00	1.00	1.00	1.00	1/(1 + 0.053 * P _{VA} * H	l _{vo})
Turnover Factor	KM		0.91	1.00	0.30	0.28	0.77	0.77	turnovers < 36 = 1 turn	overs > 36 = (180 + N)/6N
Working Loop Deduct Factor	K-		1.00	1.00	1.00	1.00	1.00	1.00	0.75 for crude oils 1	0 all other organic liquid
Daily Vanor Pressure Range	dPv	nsia	0.005	0.005	0.005	0.005	0.004	0.004		outor organio iiquiu
Vanor Space Volume	V	412	0.000	21	21	21	402	402	pi * (D/2)^2 * H	
vapor space volume	VV M	113	21	21 0.00005	41	21	402	402	(M * D) / / 10 704*	г \
Vapor Density	VVV	ID/ft3	0.00025	0.00025	0.00025	0.00025	0.00016	0.00007	$(WV = VA) / (10.731^{\circ})$	LA/
04	1	lle h ar	0.4	0.4	0.4	0.4	4.0	0.0	265 * \/ * \// * '/	* 12
Standing Losses	LS	lb/yr	0.1	0.1	0.1	0.1	1.3	0.6	305 V _V W _V K _E	n _S
Working Losses	Lw	lb/yr	0.3	0.1	0.6	0.6	5.2	2.2	0.0010 * M _V * P _{VA} * 0	J/42 * K _N * K _P
Total Losses	LT	lb/yr	0.4	0.2	0.7	0.7	6.5	2.8	L _S + L _W	
Annual VOC Emission Rate		tpy	0.0002	0.0001	0.0003	0.0004	0.003	0.001	L _T / 2000	
Working Losses at Max VP	Lw	lb/vr	0.4	0.1	2.3	2.7	8.1	3.4	0.0010 * My * Pyy * 0	Q/42 * 1 * K⊳
Max VOC Emission Boto		lb/br	0.0104	0.0104	0.0104	0.0104	0 1616	0.0699	(I* FR / (N * T	
	-мах	10/11	0.0104	0.0104	0.0104	0.0104	0.1010	0.0000	(-vv ···M)/('V ·CG.	
Notes										
10100.										

Annual emission rate calculations taken from AP-42 5th Ed., Section 7.
 Calculated using TCEQ equation from Storage Tank Guidance Document.

Table A-18. Auxiliary Boiler Emission Calculations

Las Brisas Energy Center, LLC

Emission calculations are identical for both auxiliary boilers.
EPN: AUX-BOIL1
EPN: AUX-BOIL2
Fuel Type: Natural Gas

	uci iypc.	Matural C	143								
Gross Heat	ting Value	of Fuel G	ias		Combus	tion Calc					
Component	Fuel Gas (mol)%	Fuel Gas (wt%)	Mw	HHV (BTU/Ibmol)	Fuel Molar Flowrate (Ibmol/hr)	O2 Stoic. Coeff.	Oxygen Requirement (Ibmol/hr)	CO2 Stoic. Coeff.	CO2 Production (Ibmol/hr)	H2O Stoic. Coeff.	H2O Production (Ibmol/hr)
carbon dioxide	0.48%	1.24%	44.0098	-	2.3	0	0.0	1	2.3	0	0.0
nitrogen	2.48%	4.09%	28.013	-	11.6	0	0.0	0	0.0	0	0.0
helium	0.07%	0.02%	4.0026	-	0.3	0	0.0	0	0.0	0	0.0
argon	0.02%	0.05%	39.948	-	0.1	0	0.0	0	0.0	0	0.0
hydrogen	0.04%	0.00%	2.0158	123,364	0.2	0.5	0.1	0	0.0	1	0.2
methane	93.75%	88.53%	16.0426	384,517	439.8	2	879.5	1	439.8	2	879.5
ethane	2.75%	4.87%	30.0694	680,211	12.9	3.5	45.1	2	25.8	3	38.7
propane	0.29%	0.75%	44.0962	983,117	1.4	5	6.8	3	4.1	4	5.4
propylene	0.01%	0.02%	42.0804	886,703	0.0	4.5	0.2	3	0.1	3	0.1
butane	0.03%	0.10%	58.123	1,279,191	0.1	6.5	0.9	4	0.6	5	0.7
isobutane	0.04%	0.14%	58.123	1,276,534	0.2	6.5	1.2	4	0.8	5	0.9
pentane	0.01%	0.04%	72.1498	1,524,401	0.0	8	0.4	5	0.2	6	0.28
isopentane	0.01%	0.04%	72.1498	1,521,365	0.0	8	0.4	5	0.2	6	0.28
hexane	0.02%	0.10%	86.17	1,807,569	0.1	9.5	0.9	6	0.6	7	0.66
	100.0%	100.0%	•	TOTALS	469		936		474		927

Average Molecular Weight= Fuel gas HHV=

16.99 lb/lbmol 383740 BTU/lbmol

992 BTU/scf

Fuel Input

Averaging Period	Firing Duty (HHV) (MMBTU/hr)	Fuel Gas Molar Flowrate (Ibmol/hr)	Fuel Gas Vol. Flowrate (scf/hr)	Fuel Gas Vol. Flowrate (scfm)
Annual	51.4	134	51,791	863
Hourly	180.0	469	181,476	3025

Air Requirements

Composition of Air is 21% O2 and 79% N2										
Assume	10% Excess Air									
O2 Flowrate=	(936 lbmol O2/hr)(1 + 0.1)=	1029 lbmol/hr								
N2 Flowrate=	(1,029 lbmol/hr)(79 / 21)=	3871 lbmol/hr								
Air Flowrate=	(1,029 lbmol O2/hr)(1 / 0.21)=	4900 lbmol/hr								
Excess Air	=	31598 scfm								

Annual Operating Hours 2500

Exhaust Emissions

	E	mission Basis	5		Annual				
				Max Hourly Emission	Average Emission	Max Hourly Emission	Conc.		
Component	Short Term	Annual	Units	(lb/hr)	(tpy)	(lbmol/hr)	(% vol)		
N2						3871	72%		
O2						94	2%		
H2O						927	17%		
CO2						474	9%		
PM10	7.6	7.6	lb/MMscf	1.38	1.72	NA	NA		
VOC	5.5	5.5	lb/MMscf	1.00	1.25	0.0293	0.001%		
NOx	0.035	0.035	lb/MMbtu	6.30	7.88	0.14	0.003%		
CO	100	100	ppm	15.03	18.79	0.54	0.010%		
SO2	0.0025	0.0025	gr H2S/dscf	0.12	0.15	0.002	0.000%		
Totals						5367			
PM10 Basis:	AP42-5th Sec	tion 1.4 (7/98)							
VOC Basis:	AP42-5th Sec	tion 1.4 (7/98)							
NOx Basis:	BACT								
CO Basis:	BACT is 100 I	PPM of CO							
SO2 Basis:	Nat. Gas								
NOTE: (1) VOC concentration calculated as methane; NOx concentration calculated as NO2.									
Stack Data									
Param	Parameter Value Unit								

Parameter	Value	Unit
Height	TBD	ft. above-ground level
Diameter	TBD	ft
Exhaust Flow		acfm
Exhaust Temperature	TBD	°F
Exhaust Velocity	TBD	ft/sec.

Emission ca EPN: EPN	Iculations a	re identical 1	for both p	ropane vapo	orizers.						
EFN.	PROF-VAP										
F Gross Hea	[:] uel Type: ting Value	Propane of Fuel G	as		Combus	tion Calc	ulations				
Component	Fuel Gas (mol)%	Fuel Gas (wt%)	Mw	HHV (BTU/Ibmol)	Fuel Molar Flowrate (Ibmol/hr)	O2 Stoic. Coeff.	Oxygen Requirement (Ibmol/hr)	CO2 Stoic. Coeff.	CO2 Production (Ibmol/hr)	H2O Stoic. Coeff.	H2O Productio (Ibmol/hr
carbon dioxide	0.00%	0.00%	44.0098	-	0.0	0	0.0	1	0.0	0	0.0
nitrogen	0.00%	0.00%	28.013	-	0.0	0	0.0	0	0.0	0	0.0
nelium	0.00%	0.00%	4.0026		0.0	0	0.0	0	0.0	0	0.0
argon	0.00%	0.00%	39.948	-	0.0	0	0.0	0	0.0	0	0.0
nydrogen	0.00%	0.00%	2.0158	123,364	0.0	0.5	0.0	0	0.0	1	0.0
methane	0.00%	0.00%	16.0426	384,517	0.0	2	0.0	1	0.0	2	0.0
ethane	0.00%	0.00%	30.0694	680,211	0.0	3.5	0.0	2	0.0	3	0.0
oropane	100.00%	100.00%	44.0962	983,117	16.3	5	81.4	3	48.8	4	65.1
	0.00%	0.00%	42.0804	886,703	0.0	4.5	0.0	3	0.0	3	0.0
Julane	0.00%	0.00%	58 123	1,279,191	0.0	6.5	0.0	4	0.0	5	0.0
enhutane	0.00%			1.270.004	0.0	0.0	0.0	-	0.0	<u> </u>	0.0
sobutane	0.00%	0.00%	72 1498	1 524 401	0.0	8	0.0	5	0.0	6	0.00
sobutane pentane sopentane	0.00% 0.00% 0.00%	0.00%	72.1498	1,524,401	0.0	8 8	0.0	5 5	0.0	6 6	0.00
sobutane pentane sopentane nexane Average Molecu	0.00% 0.00% 0.00% 100.0% Jlar Weight=	0.00% 0.00% 0.00% 100.0% 44.10 983117	72.1498 72.1498 86.17	1,524,401 1,521,365 1,807,569 TOTALS	0.0 0.0 0.0 16	8 8 9.5	0.0 0.0 0.0 81	5 5 6	0.0 0.0 0.0 49	6 6 7	0.00 0.00 0.00 65
isobutane pentane isopentane hexane Average Molecu Fuel gas HHV= Fuel Input	0.00% 0.00% 0.00% 100.0% Jlar Weight=	0.00% 0.00% 0.00% 100.0% 44.10 983117	72.1498 72.1498 86.17 Ib/Ibmol BTU/Ibmol	1,524,401 1,521,365 1,807,569 TOTALS 2541	0.0 0.0 16 BTU/scf	8 8 9.5	0.0 0.0 81	5 5 6	0.0 0.0 0.0 49	6 6 7	0.00 0.00 0.00 65
isobutane pentane isopentane hexane Average Molecu Fuel gas HHV= Fuel Input	0.00% 0.00% 0.00% 100.0% Jlar Weight=	0.00% 0.00% 0.00% 100.0% 44.10 983117 Fuel Gas Molar	72.1498 72.1498 86.17 Ib/Ibmol BTU/Ibmol Fuel Gas Vol. Elourate	1,524,401 1,521,365 1,807,569 TOTALS 2541	0.0 0.0 16 BTU/scf	8 9.5 Air Requ	0.0 0.0 81 irements	5 5 6	0.0 0.0 49	6 6 7	0.00 0.00 0.00 65
sobutane bentane sopentane hexane Average Molecu Fuel gas HHV= Fuel Input Averaging Period	0.00% 0.00% 0.00% 100.0% Jlar Weight=	0.00% 0.00% 0.00% 100.0% 44.10 983117 Fuel Gas Molar Flowrate (lbmol/br)	72.1498 72.1498 86.17 Ib/Ibmol BTU/Ibmol Fuel Gas Vol. Flowrate (scf/hr)	1,524,401 1,521,365 1,807,569 TOTALS 2541 Fuel Gas Vol. Flowrate (scfm)	0.0 0.0 16 BTU/scf	8 9.5 Air Requ	0.0 0.0 81 irements	5 5 6	0.0 0.0 49	6 6 7	0.00 0.00 65
sobutane pentane sopentane nexane Average Molecu Fuel gas HHV= Fuel Input Averaging Period	0.00% 0.00% 0.00% 100.0% Jlar Weight= Firing Duty (HHV) (MMBTU/hr)	0.00% 0.00% 0.00% 100.0% 44.10 983117 Fuel Gas Molar Flowrate (Ibmol/hr)	72.1498 72.1498 86.17 Ib/Ibmol BTU/Ibmol Fuel Gas Vol. Flowrate (scf/hr) 1 707	1,524,401 1,521,365 1,807,569 TOTALS 2541 Fuel Gas Vol. Flowrate (scfm)	0.0 0.0 16 BTU/scf	8 9.5 Air Requ	0.0 0.0 81 irements of Air is 21% O2	5 5 6	0.0 0.0 0.0 49	6 6 7	0.00 0.00 65
sobutane pentane sopentane nexane Average Molecu Fuel gas HHV= Fuel Input Averaging Period Annual Hourly	0.00% 0.00% 0.00% 100.0% Jlar Weight= Firing Duty (HHV) (MMBTU/hr) 4.57 16 0	0.00% 0.00% 0.00% 100.0% 44.10 983117 Fuel Gas Molar Flowrate (Ibmol/hr) 5 16	72.1498 72.1498 86.17 b/lbmol BTU/lbmol Fuel Gas Vol. Flowrate (scf/hr) 1,797 6.296	1,524,401 1,521,365 1,807,569 TOTALS 2541 Fuel Gas Vol. Flowrate (scfm) 30 105	0.0 0.0 16 BTU/scf	8 9.5 Air Requ Composition Assume 02 Flowrate=	0.0 0.0 81 irements of Air is 21% O2 10%	2 and 79 ^o Excess <i>J</i>	0.0 0.0 0.0 49 6 N2 Air 2/br)(1 + 0 1)=	6 6 7	0.00 0.00 65
sobutane pentane sopentane nexane Average Molecu Fuel gas HHV= Fuel Input Averaging Period Annual Hourly	0.00% 0.00% 0.00% 100.0% Jlar Weight= Firing Duty (HHV) (MMBTU/hr) 4.57 16.0	0.00% 0.00% 0.00% 100.0% 44.10 983117 Fuel Gas Molar Flowrate (Ibmol/hr) 5 16	72.1498 72.1498 86.17 b/lbmol BTU/lbmol Fuel Gas Vol. Flowrate (scf/hr) 1,797 6,296	1,524,401 1,521,365 1,807,569 TOTALS 2541 Fuel Gas Vol. Flowrate (scfm) 30 105	0.0 0.0 16 BTU/scf	8 9.5 Air Requ Composition Assume O2 Flowrate= N2 Flowrate=	0.0 0.0 81 irements of Air is 21% O2 10% = (81	2 and 79 ^c Excess J Ibmol O (90 lbmc	0.0 0.0 49 6 N2 4ir 2/hr)(1 + 0.1)=	6 6 7 90 337	0.00 0.00 65
sobutane pentane sopentane hexane Average Molecu Fuel gas HHV= Fuel Input Averaging Period Annual Hourly Annual Operatin	0.00% 0.00% 0.00% 100.0% Jlar Weight= Firing Duty (HHV) (MMBTU/hr) 4.57 16.0	0.00% 0.00% 0.00% 100.0% 44.10 983117 Fuel Gas Molar Flowrate (Ibmol/hr) 5 16 2500	T2.1498 72.1498 86.17 Ib/Ibmol BTU/Ibmol Flownate (scf/hr) 1,797 6,296	1,524,401 1,521,365 1,807,569 TOTALS 2541 Fuel Gas Vol. Flowrate (scfm) 30 105	0.0 0.0 16 BTU/scf	8 9.5 Air Requ Composition Assume O2 Flowrate= Air Flowrate= Air Flowrate= Excose Air	0.0 0.0 81 irements of Air is 21% O2 10% = (81	5 6 2 and 799 Excess J Ibmol O (90 lbmol Ibmol O	0.0 0.0 49 6 N2 Air 2/hr)(1 + 0.1)= 3/hr)(79 / 21)= '/hr)(1 / 0.21)=	6 6 7 90 337 426 2748	0.00 0.00 65 Ibmol/hr Ibmol/hr Ibmol/hr
sobutane pentane sopentane hexane Average Molecu Fuel gas HHV= Fuel Input Averaging Period Annual Hourly Annual Operatin Exhaust E	0.00% 0.00% 0.00% 100.0% Jlar Weight= Firing Duty (HHV) (MMBTU/hr) 4.57 16.0 ng Hours missions	0.00% 0.00% 0.00% 100.0% 44.10 983117 Fuel Gas Molar Flowrate (Ibmol/hr) 5 16 2500	72.1498 72.1498 86.17 Ib/Ibmol BTU/Ibmol Fuel Gas Vol. Flowrate (scf/hr) 1,797 6,296	1,524,401 1,521,365 1,807,569 TOTALS 2541 Fuel Gas Vol. Flowrate (scfm) 30 105	0.0 0.0 16 BTU/scf	8 9.5 Air Requ Composition Assume O2 Flowrate= N2 Flowrate= Air Flowrate= Excess Air	0.0 0.0 81 irements of Air is 21% O2 10% = (81	5 6 2 and 799 Excess Ibmol O (90 lbmol O 2	0.0 0.0 49 6 N2 Air 2/hr)(1 + 0.1)= 5/hr)(79 / 21)= '/hr)(1 / 0.21)= =	6 6 7 90 337 426 2748	0.00 0.00 65 Ibmol/hr Ibmol/hr Ibmol/hr Ibmol/hr
isobutane pentane isopentane hexane Average Molecu Fuel gas HHV= Fuel Input Averaging Period Annual Hourly Annual Operatir	0.00% 0.00% 0.00% 100.0% Jlar Weight= Firing Duty (HHV) (MMBTU/hr) 4.57 16.0 Ig Hours Missions	0.00% 0.00% 0.00% 100.0% 44.10 983117 Fuel Gas Molar Flowrate (Ibmol/hr) 5 16 2500 mission Basis	51120 72.1498 72.1498 86.17 Ib/Ibmol BTU/Ibmol BTU/Ibmol Flowrate (scf/hr) 1,797 6,296	1,524,401 1,521,365 1,807,569 TOTALS 2541 Fuel Gas Vol. Flowrate (scfm) 30 105	0.0 0.0 16 BTU/scf	8 9.5 Air Requ Composition Assume O2 Flowrate= Air Flowrate= Air Flowrate= Excess Air	0.0 0.0 81 irements of Air is 21% O2 10% = (81 = (90	5 6 2 and 799 Excess <i>J</i> Ibmol O (90 lbmol Ibmol O2	0.0 0.0 49 6 N2 Air 2/hr)(1 + 0.1)= bl/hr)(79 / 21)= 2/hr)(1 / 0.21)= =	6 6 7 90 337 426 2748	0.00 0.00 65 Ibmol/hr Ibmol/hr Ibmol/hr Ibmol/hr
sobutane pentane sopentane hexane Average Molecu Fuel gas HHV= Fuel Input Averaging Period Annual Hourly Annual Operatir Exhaust E	0.00% 0.00% 0.00% 100.0% Jlar Weight= Firing Duty (HHV) (MMBTU/hr) 4.57 16.0 Ing Hours Missions	0.00% 0.00% 0.00% 100.0% 44.10 983117 Fuel Gas Molar Flowrate (Ibmol/hr) 5 16 2500 mission Basis	51120 72.1498 72.1498 86.17 Ib/Ibmol BTU/Ibmol BTU/Ibmol Flowrate (scf/hr) 1,797 6,296	1,524,401 1,521,365 1,807,569 TOTALS 2541 Fuel Gas Vol. Flowrate (scfm) 30 105 Max Hourly Emission	0.0 0.0 16 BTU/scf	8 9.5 Air Requ Composition Assume O2 Flowrate= N2 Flowrate= Air Flowrate= Excess Air	0.0 0.0 81 irements of Air is 21% O2 10% = (81 : : : (90	2 and 79 ^c Excess J Ibmol O (90 lbmol O2	0.0 0.0 49 6 N2 Air 2/hr)(1 + 0.1)= 5/hr)(79 / 21)= 2/hr)(1 / 0.21)= =	6 6 7 90 337 426 2748	0.00 0.00 65 Ibmol/hr Ibmol/hr Ibmol/hr
sobutane pentane sopentane hexane Average Molecu Fuel gas HHV= Fuel Input Averaging Period Annual Hourly Annual Operatir Exhaust E	0.00% 0.00% 0.00% 100.0% Jlar Weight= Firing Duty (HHV) (MMBTU/hr) 4.57 16.0 Ing Hours Missions E Short Term	0.00% 0.00% 0.00% 100.0% 44.10 983117 Fuel Gas Molar Flowrate (Ibmol/hr) 5 16 2500 mission Basis	T2.1498 72.1498 86.17 Ib/Ibmol BTU/Ibmol BTU/Ibmol Flowrate (scf/hr) 1,797 6,296 S Units	1,524,401 1,521,365 1,807,569 TOTALS 2541 Fuel Gas Vol. Flowrate (scfm) 30 105 Max Hourly Emission (lb/br)	0.0 0.0 16 BTU/scf	8 9.5 Air Requ Composition Assume 02 Flowrate= N2 Flowrate= Air Flowrate= Excess Air Max Hourly Emission (Ibmol/hr)	0.0 0.0 81 irements of Air is 21% O2 10% = (81 : : (90 Conc. (% vol)	5 6 2 and 79 Excess Ibmol O (90 lbmol Ibmol O2	0.0 0.0 49 6 N2 Air 2/hr)(1 + 0.1)= 5/hr)(79 / 21)= 2/hr)(1 / 0.21)= =	6 6 7 90 337 426 2748	0.00 0.00 65 Ibmol/hr Ibmol/hr Ibmol/hr
sobutane pentane sopentane hexane Average Molecu Fuel gas HHV= Fuel Input Averaging Period Annual Hourly Annual Operatir Exhaust E	0.00% 0.00% 0.00% 100.0% Jlar Weight= Firing Duty (HHV) (MMBTU/hr) 4.57 16.0 19 Hours missions E Short Term	0.00% 0.00% 0.00% 100.0% 44.10 983117 Fuel Gas Molar Flowrate (Ibmol/hr) 5 16 2500 mission Basis Annual	T2.1498 72.1498 86.17 Ib/Ibmol BTU/Ibmol BTU/Ibmol Flowrate (scf/hr) 1,797 6,296 S Units	1,524,401 1,521,365 1,807,569 TOTALS 2541 Fuel Gas Vol. Flowrate (scfm) 30 105 Max Hourly Emission (lb/hr)	0.0 0.0 16 BTU/scf	8 9.5 Air Requ Composition Assume 02 Flowrate= N2 Flowrate= Air Flowrate= Excess Air Max Hourly Emission (Ibmol/hr) 337	0.0 0.0 81 irements of Air is 21% O2 10% = (81 = (90 Conc. (% vol) 73%	2 and 79% Excess J Ibmol O (90 Ibmol O2	0.0 0.0 49 % N2 Air 2/hr)(1 + 0.1)= 3/hr)(79 / 21)= 2/hr)(1 / 0.21)= =	6 6 7 90 337 426 2748	0.00 0.00 65 Ibmol/hr Ibmol/hr Ibmol/hr
sobutane pentane sopentane hexane Average Molecu Fuel gas HHV= Fuel Input Averaging Period Annual Hourly Annual Operatir Exhaust E Component V2	0.00% 0.00% 0.00% 100.0% Jlar Weight= Firing Duty (HHV) (MMBTU/hr) 4.57 16.0 19 Hours missions E Short Term	0.00% 0.00% 0.00% 100.0% 44.10 983117 Fuel Gas Molar Flowrate (Ibmol/hr) 5 16 2500 mission Basis Annual	T2.1498 72.1498 86.17 Ib/Ibmol BTU/Ibmol BTU/Ibmol Flowrate (scf/hr) 1,797 6,296	1,524,401 1,521,365 1,807,569 TOTALS 2541 Fuel Gas Vol. Flowrate (scfm) 30 105 Max Hourly Emission (lb/hr)	0.0 0.0 16 BTU/scf	8 9.5 Air Requ Composition Assume 02 Flowrate= Air Flowrate= Air Flowrate= Excess Air Max Hourly Emission (Ibmol/hr) 337 8	0.0 0.0 81 irements of Air is 21% O2 10% = (81 = (90 Conc. (% vol) 73% 2%	2 and 79 ^c Excess J Ibmol O (90 lbmol O2	0.0 0.0 49 % N2 Air 2/hr)(1 + 0.1)= 5/hr)(79 / 21)= 2/hr)(1 / 0.21)= =	6 6 7 90 337 426 2748	0.00 0.00 65 Ibmol/hr Ibmol/hr Ibmol/hr
sobutane pentane sopentane hexane Average Molecu Fuel gas HHV= Fuel Input Averaging Period Annual Hourly Annual Operatir Exhaust E Component N2 D2	0.00% 0.00% 0.00% 100.0% Jlar Weight= Firing Duty (HHV) (MMBTU/hr) 4.57 16.0 missions E Short Term	0.00% 0.00% 0.00% 100.0% 44.10 983117 Fuel Gas Molar Flowrate (Ibmol/hr) 5 16 2500 mission Basis Annual	T2.1498 72.1498 86.17 Ib/Ibmol BTU/Ibmol BTU/Ibmol Flowrate (scf/hr) 1,797 6,296	1,524,401 1,521,365 1,807,569 TOTALS 2541 Fuel Gas Vol. Flowrate (scfm) 30 105 Max Hourly Emission (lb/hr)	0.0 0.0 16 BTU/scf	8 9.5 Air Requ Composition Assume O2 Flowrate= Air Flowrate= Excess Air Max Hourly Emission (Ibmol/hr) 337 8 65	0.0 0.0 0.0 81 irements of Air is 21% O2 10% = (81 : : : (90 Conc. (% vol) 73% 2% 14%	2 and 79% Excess J Ibmol O (90 lbmol O2	0.0 0.0 49 % N2 Air 2/hr)(1 + 0.1)= 3/hr)(79 / 21)= =	6 6 7 90 337 426 2748	0.00 0.00 65 Ibmol/hr Ibmol/hr Ibmol/hr
sobutane pentane sopentane nexane Average Molecu Fuel gas HHV= Fuel Input Averaging Period Annual Hourly Annual Operatir Exhaust E Component N2 D2 H2O CO2	0.00% 0.00% 0.00% 100.0% Jlar Weight= Firing Duty (HHV) (MMBTU/hr) 4.57 16.0 missions E Short Term	0.00% 0.00% 0.00% 100.0% 44.10 983117 Fuel Gas Molar Flowrate (Ibmol/hr) 5 16 2500 mission Basis Annual	T2.1498 72.1498 86.17 Ib/Ibmol BTU/Ibmol BTU/Ibmol Flowrate (scf/hr) 1,797 6,296	1,524,401 1,521,365 1,807,569 TOTALS 2541 Fuel Gas Vol. Flowrate (scfm) 30 105 Max Hourly Emission (lb/hr)	0.0 0.0 16 BTU/scf	8 9.5 Air Requ Composition Assume O2 Flowrate= Air Flowrate= Excess Air Max Hourly Emission (Ibmol/hr) 337 8 65 49	0.0 0.0 0.0 81 irements of Air is 21% O2 10% = (81 : : : (90 Conc. (% vol) 73% 2% 14% 11%	2 and 79% Excess J Ibmol O (90 lbmol O2	0.0 0.0 49 % N2 Air 2/hr)(1 + 0.1)= 3/hr)(79 / 21)= 2/hr)(1 / 0.21)= =	6 6 7 90 337 426 2748	0.00 0.00 65 Ibmol/hr Ibmol/hr Ibmol/hr
sobutane pentane sopentane hexane Average Molecu Fuel gas HHV= Fuel Input Averaging Period Annual Hourly Annual Operatin Exhaust E Component N2 D2 H2O CO2	0.00% 0.00% 0.00% 100.0% Jlar Weight= Firing Duty (HHV) (MMBTU/hr) 4.57 16.0 Ing Hours missions E Short Term 0.0066	0.00% 0.00% 0.00% 100.0% 44.10 983117 Fuel Gas Molar Flowrate (Ibmol/hr) 5 16 2500 mission Basis Annual 0.0066	T2.1498 72.1498 86.17 Ib/Ibmol BTU/Ibmol Fuel Gas Vol. Flowrate (scf/hr) 1,797 6,296 S Units Ib/MMbtu	1,524,401 1,521,365 1,807,569 TOTALS 2541 Fuel Gas Vol. Flowrate (scfm) 30 105 Max Hourly Emission (lb/hr)	0.0 0.0 16 BTU/scf Annual Average Emission (tpy)	8 9.5 Air Requ Composition Assume O2 Flowrate= Air Flowrate= Excess Air Max Hourly Emission (Ibmol/hr) 337 8 65 49 NA	0.0 0.0 0.0 81 irements of Air is 21% O2 10% = (81 = (90 Conc. (% vol) 73% 2% 14% 11% NA	2 and 799 Excess J Ibmol O (90 lbmol O2	0.0 0.0 49 % N2 Air 2/hr)(1 + 0.1)= bl/hr)(79 / 21)= 2/hr)(1 / 0.21)= =	6 6 7 90 337 426 2748	0.00 0.00 65 Ibmol/hr Ibmol/hr Ibmol/hr scfm
sobutane pentane sopentane hexane Average Molecu Fuel gas HHV= Fuel Input Averaging Period Annual Hourly Annual Operatin Exhaust E Component N2 D2 H2O CO2 PM10 /OC	0.00% 0.00% 0.00% 100.0% Jlar Weight= Firing Duty (HHV) (MBTU/hr) 4.57 16.0 missions E Short Term 0.0066 0.003	0.00% 0.00% 0.00% 100.0% 44.10 983117 Fuel Gas Molar Flowrate (Ibmol/hr) 5 16 2500 mission Basis Annual 0.0066 0.003	Ib/lbmol Fuel Gas Vol. Flowrate (scf/hr) 1,797 6,296	1,524,401 1,521,365 1,807,569 TOTALS 2541 Fuel Gas Vol. Flowrate (scfm) 30 105 Max Hourly Emission (lb/hr)	0.0 0.0 16 BTU/scf Annual Average Emission (tpy)	8 8 9.5 Air Requ Composition Assume O2 Flowrate= Air Flowrate= Excess Air Max Hourly Emission (Ibmol/hr) 337 8 65 49 NA 0.0014	0.0 0.0 0.0 81 irements of Air is 21% O2 10% = (81 = (90 Conc. (% vol) 73% 2% 14% 11% NA 0.000%	2 and 799 Excess J Ibmol O (90 lbmol O2	0.0 0.0 49 % N2 Air 2/hr)(1 + 0.1)= bl/hr)(79 / 21)= 2/hr)(1 / 0.21)= =	6 6 7 90 337 426 2748	0.00 0.00 65 Ibmol/hr Ibmol/hr Ibmol/hr Ibmol/hr
sobutane pentane sopentane hexane Average Molecu Fuel gas HHV= Fuel Input Averaging Period Annual Hourly Annual Operatin Exhaust E Component N2 D2 H2O CO2 PM10 VOC N0x	0.00% 0.00% 0.00% 100.0% Jlar Weight= Firing Duty (HHV) (MBTU/hr) 4.57 16.0 mg Hours missions E Short Term 0.0066 0.003 0.100	0.00% 0.00% 0.00% 100.0% 44.10 983117 Fuel Gas Molar Flowrate (Ibmol/hr) 5 16 2500 mission Basis Annual 0.0066 0.003 0.100	51120 72.1498 72.1498 86.17 Ib/Ibmol BTU/Ibmol BTU/Ibmol Flowrate (scf/hr) 1,797 6,296 s Units b/MMbtu Ib/MMbtu	1,524,401 1,521,365 1,807,569 TOTALS 2541 Fuel Gas Vol. Flowrate (scfm) 30 105 Max Hourly Emission (lb/hr) 0.11 0.05 1.60 1.60	0.0 0.0 16 BTU/scf Annual Average Emission (tpy) 0.13 0.06 2.00	8 8 9.5 Air Requ Composition Assume O2 Flowrate= Air Flowrate= Excess Air Max Hourly Emission (Ibmol/hr) 337 8 65 49 NA 0.0014 0.03 0.07	0.0 0.0 0.0 81 irements of Air is 21% O2 10% conc. (% vol) 73% 2% 14% 11% NA 0.000% 0.008% 0.008%	2 and 799 Excess J Ibmol O (90 Ibmol O2	0.0 0.0 49 % N2 Air 2/hr)(1 + 0.1)= bl/hr)(79 / 21)= 2/hr)(1 / 0.21)= =	6 6 7 90 337 426 2748	0.00 0.00 65 Ibmol/hr Ibmol/hr Ibmol/hr scfm

CO Basis: BACT is 100 PPM of CO NOTE: (1) VOC concentration calculated as methane; NOx concentration calculated as NO2.

Stack Data

Parameter	Value	Unit
Height	TBD	ft. above-ground level
Diameter	TBD	ft
Exhaust Flow	TBD	acfm
Exhaust Temperature	TBD	°F
Exhaust Velocity	TBD	ft/sec.

Appendix B

TCEQ Table 2 – Material Balance

TABLE 2MATERIAL BALANCE

This material balance table is used to quantify possible emissions of air contaminants and special emphasis should be placed on potential air contaminants, for example: If feed contains sulfur, show distribution to all products. Please relate each material (or group of materials) listed to its respective location in the process flow diagram by assigning point numbers (taken from the flow diagram) to each material.

LIST EVERY MATERIAL INVOLVED IN EACH OF THE FOLLOWING GROUPS	Point No. from Flow Diagram	Process Rate (l standard conditior Check appropriate each p	Measurement	Estimation	Calculation	
1. Raw Materials - Input						
Ammonia-Aqueous Limestone Steam Generator Makeup Water Sand		TBD TBD TBD TBD	lb/hr lb/hr lb/hr lb/hr		X X X X	
2. Fuels Input						
Petroleum Coke		892,754	lb/hr		X	
3. Products & By-Products - Output						
Electricity Steam		1,200	MW (nominal) lb/hr		X X	
4. Solid Wastes - Output						
Flyash Bottom Ash		TBD TBD	lb/hr lb/hr		X X	
5. Liquid Wastes - Output						
Boiler Blowdown		TBD	lb/hr		X	
6. Airborne Waste (Solid) - Output						
See Table 1(a)						
7. Airborne Wastes (Gaseous) - Output						
See Table 1(a)						

NOTE:

*Above material balance is representative of expected plant operations, but is not intended to represent specific operating limitations or constraints.

Appendix C

TCEQ Equipment Tables

TABLE 6

BOILERS AND HEATERS

Type of Device: CF	CFB Boiler Manufacturer: TBD									
Number from flow	diagram:	CFB-1, CI	FB-2, CFB-3,	& CFB-4	Model Num	ber: TBD				
	-		CHA	RACTERI	STICS OF IN	PUT				
Type Fuel		Chen	nical Composi	tion	Inlet Air Te	mp °F		Fuel F	low Ra	ate
		(% by Weight)		(after prel	neat)	(scfm* or lb/hr)			
							Aver	Average Design Maximum		
Pet Coke		S	See Table A-7		TBD		TB	TBD TBD Total Air Supplied and Excess Air		
Natural Gas					Gross Hea	ating	Total			
Propane					Value of	Fuel				
					(specify u	nits)	Average	C N	Desi	ign Maximum
					13,800 Bi	tu/lb	669,365	tm* 6	<u>569,36</u>	<u>5</u> scfm *
							25% exces	$\frac{2}{2}$	<u>25</u> % ex	cess
							(vol)	()	vol)	
	1'		HE	ATTRAN	SFER MEDIU	M	T 1			•
Type Transfer M	edium	Temp	erature°F	Pressu	ire (psia)		Flow	Rate (spec	cify un	its)
(water, oil, et	c.)	Input	Output	Input	Output	AV	erage	L	Jesign	Maxim
רותד		TDD	TDD	TDD	TDD		TDD		тт	חנ
IDD		IDD	IDD	IDD	IDD		IDD		11	D
			OPER	ATING CH	ARACTERIS	STICS				
Ave. Fire Box Te	emp.	Fire	Box Volume(f	t. ³).	Gas Vel	ocity in F	ire Box		Reside	nce Time
at max, firing r	ate	(1	from drawing)	.),	(ft/sec) a	t max fir	ing rate	-	in Fi	re Box
at max. ming it	ace	(1	iom arawing)		(10,500) 0		ing rate	at m	nax firi	ing rate (sec)
TBD			TBD			TBD			Т	BD
			S	STACK PA	RAMETERS					
Stack Diameters	Stack	Height		Stack Gas	Velocity (ft/s	ec)		Stack Ga	us Ez	xhaust
		(@Ave.Fuel F	low Rate)	(@Max. Fu	el Flow	Rate)	Temp°F	7	scfm
45 ft		500 ft	16.5		16	.5		175		1,311,606
			CHAR	ACTERIS	TICS OF OU	ГPUT				
Material			Chemica	l Composit	ion of Exit Ga	as Releas	ed (% by V	olume)		
0										
See Table A-5										
Attach an explanatio	n on now	temperatu	re, air flow rat	ie, excess a	ir or other ope	erating va	ariables are	controlled	l.	

Also supply an assembly drawing, dimensioned and to scale, in plan, elevation, and as many sections as are needed to show clearly the operation of the combustion unit. Show interior dimensions and features of the equipment necessary to calculate in performance.

*Standard Conditions: 70°F,14.7 psia

TABLE 6

BOILERS AND HEATERS

Type of Device: Auxiliary Boiler Manufacturer: TBD											
Number from flow	diagram:	AUX-BOI	L1 & AUX-B	OIL2	Model Numb	ber: TBD					
			CHA	RACTERI	STICS OF IN	PUT					
Type Fuel		Chen	nical Composi	tion	Inlet Air Te	mp °F	mp °F Fuel Flow Rate				
		(% by Weight) (after preheat) (scfm* or lb/hr					lb/hr)				
							Aver	Average Design Maximum			
		a			TBD		TB	TBD TBD Total Air Supplied and Excess Air			
Natural Gas		S	ee Table A-18		Gross Hea	ating	Total				
		Value of Fuel									
					(specify u	nits)	Average		Design Maximum		
					992 btu/	sci	<u>31,958</u> *	31,	<u>958</u> scfm *		
							10% exces	$\frac{10}{9}$	6 excess		
					CEED MEDIL		(vol)	(vol)		
Tuna Tuanafau M	dine	Tama			SFER MEDIC		Flow	Data (analify	(unita)		
Weter oil of		Input	Output	Pressu	lite (psia)	Δ	FIOW	Rate (specify	ian Movim		
(water, on, et	C.)	mput	Output	mput	Output	Av	erage	Des			
TBD		TBD	TBD	TRD	TBD		TRD		TBD		
IDD		TDD	IDD	TDD	IDD		TDD		IDD		
			OPER	ATING CE	IARACTERIS	STICS					
Ave. Fire Box Te	emp.	Fire	Box Volume(f	t. ³).	Gas Velo	ocity in F	ire Box	Res	sidence Time		
at max. firing ra	ate	(1	from drawing)	,,	(ft/sec) a	t max fir	ing rate	i	n Fire Box		
		,	8,		(8	at max	firing rate (sec)		
									0 ()		
TBD			TBD			TBD			TBD		
			S	STACK PA	RAMETERS						
Stack Diameters	Stack	Height		Stack Gas	Velocity (ft/s	ec)		Stack Gas	Exhaust		
		(@Ave.Fuel F	low Rate)	(@Max. Fu	el Flow	Rate)	Temp°F	scfm		
TBD		TBD	TBD		TE	BD		TBD	TBD		
			CHAR	ACTERIS	TICS OF OU	ГРИТ					
Material			Chemica	I Composit	ion of Exit Ga	as Releas	ed (% by V	olume)			
0 11 4 10											
See Table A-18											
Attach on avalance	n on ho	tomport	ro oir flow	a average a	in on other and	rotin a	minhles are	controllad			
Attach an explanation	II OH HOW	/ temperatu	ie, all now rai	ie, excess a	II of other ope	raung va	anables are	controlled.			

Also supply an assembly drawing, dimensioned and to scale, in plan, elevation, and as many sections as are needed to show clearly the operation of the combustion unit. Show interior dimensions and features of the equipment necessary to calculate in performance.

*Standard Conditions: 70°F,14.7 psia

TABLE 6

BOILERS AND HEATERS

Type of Device: Propane Vaporizers Manufacturer: TBD											
Number from flow	diagram:	PROP-VA	.P1 & PROP-V	VAP2	Model Numb	per: TBD					
		~	CHA	RACTERI	STICS OF IN	PUT			-		
Type Fuel		Chen	nical Composi	tion	Inlet Air Te	mp °F		Fuel Flow Rate			
		((% by Weight) (after preheat) (scfm* or lb/hr)					lb/hr)			
							Avera	Average Design Maximum			
Duanana		C	T-hl- A 10					1BD 1BD otal Air Supplied and Excess Air			
Propane		3	ee Table A-19		Gross Hea	ung Fuol	Total Air Supplied and Excess Air				
					value of	ruel	Augraga	ГГ	Dagian Maximum		
					2541 btu	mus)	Average		18 softm *		
					2,541 010	/ 501	$\frac{2,740}{10\%}$	$\frac{2,72}{100}$			
							$\frac{10}{10}$ (vol)	$\frac{10}{vol}$)		
			HE	AT TRAN	SFER MEDIL	IM	(101)	(101))		
Type Transfer M	edium	Temr	erature [°] F	Pressi	re (psia)	111	Flow	Rate (specify	units)		
(Water, oil, et	c.)	Input	Output	Input	Output	Av	erage	Des	ign Maxim		
	/	1		1	1		0		0		
TBD		TBD	TBD	TBD	TBD		TBD		TBD		
	_		OPERA	ATING CH	IARACTERIS	STICS		_			
Ave. Fire Box Te	emp.	Fire	Box Volume(f	t. ³),	Gas Velo	ocity in F	ire Box	Res	sidence Time		
at max. firing ra	ate	(1	from drawing)		(ft/sec) a	ıt max fir	ing rate	i	n Fire Box		
								at max	firing rate (sec)		
TBD			TBD			TBD			TBD		
Cto als Diamatana	Cta ala	Halaha	2	Stark PA	KAMETERS			Cta ala Casa	C1		
Stack Diameters	Stack	Height		Stack Gas	Velocity (It/s	ec)	Data)	Stack Gas	Exnaust		
ТРГ		TRD	WAVE.FUELF	low Kale)	What. Fu		Kale)				
TDD		IDD	IDD		11	ענ		IBD	IDD		
			CHAR	ACTERIS	TICS OF OU	ΓΡΙΙΤ					
Material			Chemica	1 Composit	ion of Exit Ga	is Releas	ed (% by V	olume)			
							(,))			
See Table A-19											
Attach an explanation	n on how	v temperatu	re, air flow rat	te, excess a	ir or other ope	erating va	ariables are	controlled.			

Also supply an assembly drawing, dimensioned and to scale, in plan, elevation, and as many sections as are needed to show clearly the operation of the combustion unit. Show interior dimensions and features of the equipment necessary to calculate in performance.

*Standard Conditions: 70°F,14.7 psia

TABLE 7(a)

VERTICAL FIXED ROOF STORAGE TANK SUMMARY

I. 7 1. 2. 3. 5.	Fank Identification (Use a separate form for each tank). . Applicant's Name: Las Brisas Energy Center, LLC . Location (indicate on plot plan and provide coordinates): . Tank No. TNK-ACID 4. Emission Point No. TNK-ACID . FIN
6	. Status: New tank [X] Altered tank [] Relocation [] Change of Service []
Ρ	revious permit or exemption number(s) <u>NA</u>
II. 7 1	Tank Physical Characteristics Dimensions a. Shell Height :8 ft. b. Diameter:8 ft. c. Maximum Liquid Height :8_ ft. d. Nominal Capacity or Working Volume:6,016_ gallons. e. Turnovers per year:49.87 f. Net Throughput :300,000 gallons/year. g. Maximum Filling Rate:6,016 gallons/hour. Paint Characteristics a. Shell Color/Shade : White/White [X] Aluminum/Specular [] Aluminum/Diffuse [] Gray/Light [] Gray/Medium [] Red/Primer [] Other [] (Describe) b. Shell Condition : Good [X] Poor [] c. Roof Color/Shade : White/White [X] Aluminum/Specular [] Aluminum/Diffuse [] Gray/Light [] Gray/Medium [] Red/Primer [] Other [] (Describe) b. Shell Condition : Good [X] Poor [] c. Roof Condition : Good [X] Poor [] c. Roof Condition : Good [X] Poor [] c. Roof Characteristics a. Roof Type: Dome [] Cone [X] Poor [] b. Roof Height:ft. (not including shell height) c. Radius (Dome Roof Only):ft.

4. Breather Vent Settings	5			SPECIFY
	-			"Atmosphere" or
Valve Type	Number	Pressure Setting (psig)	Vacuum Setting (psig)	Discharging to: (name
				of abatement device)
Combination Vent Valve				
Pressure Vent Valve				
Vacuum Vent Valve				
Open Vent Valve				

Table Page	e 7(a) VERTICAL	FIXED ROOF TA	NK SUMMARY		
Perm	IIT NO. <u>IB</u>	D			
III. <i>L</i>	iquid Properties o	of Stored Materia	al		
1.	Chemical Catego	ory: Organic Liqu	ids [X] Petroleum Distilla	tes [] Crude C	Dils []
2.	Single or Multi-C	omponent Liquid			
	Single [X] Co	mplete Section III	.3		
	Multiple [] Co	mplete Section III	.4		
3.	Single Compone	ent Information			
	a. Chemical Na	me: <u>Sulfuric Acid</u>			
	b. CAS Number				
	c. Average Liqu	id Surface Tempe	erature: <u>73</u> °F.		
	d. True Vapor P	Pressure at Average	ge Liquid Surface Tempe	erature: <u>0.038</u> p	sia.
	e. Liquid Molecu	ular Weight: <u>94</u>			
4.	Multiple Compor	nent Information			
	a. Mixture Name	e:			
	b. Average Liqu	id Surface Tempe	erature:°F.		
	c. Minimum Liq	uid Surface Temp	erature: °F.		
	d. Maximum Lic	uid Surface Tem	perature: °F.		
	e. True Vapor P	Pressure at Average	ge Liquid Surface Tempe	erature: p	sia.
	f. True Vapor P	Pressure at Minim	um Liquid Surface Temp	erature: p	osia.
	g. True Vapor P	Pressure at Maxim	um Liquid Surface Temp	perature: p	osia.
	h. Liquid Molecu	ular Weight:			
	i. Vapor Molecu	ular Weight:			
	j. Chemical Co	mponents Informa	ation		
С	Chemical Name	CAS Number	Percent of Total	Percent of Total	Molecular

Chemical Name	CAS Number	Percent of Total Liquid Weight (typical)	Percent of Total Vapor Weight (typical)	Molecular Weight

TABLE 7(a)

VERTICAL FIXED ROOF STORAGE TANK SUMMARY

I	Tank Identification (I lse a senarate form for each tank)
••	Applicant's Name: Las Brisas Energy Center, LLC
	 Applicant of Name. <u>Lab Bridde Energy Content</u>, <u>Leo</u> Location (indicate on plot plan and provide coordinates):
	3 Tank No TNK-BASE 4 Emission Point No TNK-BASE
	5 FIN TNK-BASE CIN
	5. Status: New tank [X] Altered tank [] Relocation [] Change of Service []
	Previous permit or exemption number(s) <u>NA</u>
II.	Tank Physical Characteristics
	I. Dimensions
	a. Shell Height : <u>16</u> ft.
	b. Diameter: <u>8</u> ft.
	c. Maximum Liquid Height : <u>8</u> ft.
	d. Nominal Capacity or Working Volume: 6,016 gallons.
	e. Turnovers per vear: 49.87
	f Net Throughput 300.000 gallons/year
	g Maximum Filling Rate: 6.016 gallons/hour
	Plaint Characteristics
	a Shell Color/Shade · White/White [X] Aluminum/Specular [] Aluminum/Diffuse []
	Grav/Light [] Grav/Medium [] Red/Primer [] Other [] (Describe
	h Shell Condition : Good [X] Poor []
	a Poof Color/Shada : White/White [Y] Aluminum/Shacular [] Aluminum/Diffuse []
	C. Roof Color/Sindue . White/White [X] Aluminum/Specular [] Aluminum/Dinuse []
	d Deef Candition (Cood [X])
	a. Rool Condition : Good [X] Poor []
	3. Roof Characteristics
	a. Roof Type: Dome [] Cone [X]
	b. Roof Height: ft. (<i>not including shell height)</i>
	c. Radius (<i>Dome Roof Only</i>): ft.
	d. Slope (<i>Cone Roof Only</i>): ft/ft.

4. Breather Vent Settings				SPECIFY
				"Atmosphere" or
Valve Type	Number	Pressure Setting (psig)	Vacuum Setting (psig)	Discharging to: (name
				of abatement device)
Combination Vent Valve				
Pressure Vent Valve				
Vacuum Vent Valve				
Open Vent Valve				

02-95

Page 2 Permit		r Tank No	TNK-BASE	
Cinin				
II. <i>Liq</i>	uid Properties of Stored Material			
1. (Chemical Category: Organic Liquids [X] Petrole	um Distillates	[] Crude	Oils []
2. 3	Single or Multi-Component Liquid			
	Single [X] Complete Section III.3			
	Multiple [] Complete Section III.4			
3.	Single Component Information			
;	a. Chemical Name: <u>Sodium Hydroxide</u>			
	b. CAS Number:			
	c. Average Liquid Surface Temperature:7	<u>′3_</u> °F.		
	d. True Vapor Pressure at Average Liquid Surfa	ice Temperati	ure: <u>0.038</u>	psia.
	e. Liquid Molecular Weight: <u>40</u>			
4.	Multiple Component Information			
;	a. Mixture Name:			
	b. Average Liquid Surface Temperature:	°F.		
	c. Minimum Liquid Surface Temperature:	°F.		
	d. Maximum Liquid Surface Temperature:	°F.		
	e. True Vapor Pressure at Average Liquid Surfa	ice Temperati	ure:	psia.
·	f. True Vapor Pressure at Minimum Liquid Surf	ace Temperat	ure:	psia.
	g. True Vapor Pressure at Maximum Liquid Sur	face Tempera	ture:	psia.
	h. Liquid Molecular Weight:			
	i. Vapor Molecular Weight:			
	· · · · · ·			
	j. Chemical Components Information	1		

Chemical Name	CAS Number	Percent of Total Liquid Weight (typical)	Percent of Total Vapor Weight (typical)	Molecular Weight

TABLE 7(b)

HORIZONTAL FIXED ROOF STORAGE TANK SUMMARY

1. Tank Identification (Use a separate form for each tank).					
1. Applicant's Name: Las Brisas Energy Center, LLC					
2. Location (<i>indicate on plot plan and provide coordinates</i>):					
3. Tank No. <u>TNK-EG</u>	1 and TNK-	<u>EG2</u> 4. Emission F	Point No. <u>TNK-EG1 an</u>	d TNK-EG2	
5. FIN <u>TNK-EG1 and</u>	TNK-EG2	CIN			
6. Status: New	tank [X]	Altered tank []	Relocation []	Change of Service []	
Previous permit or ex	kemption	number(s) <u>NA</u>			
II. Tank Physical Charac	teristics				
1. Dimensions					
a. Shell Length :	4.6	ft.			
b. Diameter:	3 f	it.			
c Nominal Capac	ity or Wor	kina Volume [.] 243	gallons		
d. Turnovers per v	ear:	11.24	gallette		
e Net Throughput	· ·	2 734 gallons/ve	ear		
f Maximum Filling	n Rate [.]	243 gallons/h	our		
a is the tank unde	eraround?				
2 Paint Characteristics					
2. Faint Characteristics					
Grav/Light [] Grav/Medium [] Red/Primer [] Other [] (Describe					
b Shell Condition : Good [X] Poor []					
3. Breather Vent Settings SPECIFY				SPECIFY	
"Atmosphere" or					
Value Tupe	Number	Drassura Satting	Vacuum Satting	Discharging to:	
valve Type	muniber	(noid)	(nois)	(name of abatement	
		(psig)	(psig)	device)	

Table 7(b) HORIZONTAL FIXED ROOF TANK SUMMARY

Combination Vent Valve

Pressure Vent Valve

Vacuum Vent Valve

Open Vent Valve

02-95

Page 2

Permit No. TBD

III. Liquid Properties of Stored Material	
1. Chemical Category: Organic Liquids [] Petroleum Distillates [X] Crude Oils []
2. Single or Multi-Component Liquid	
Single [X] Complete Section III.3	
Multiple [] Complete Section III.4	
3. Single Component Information	
a. Chemical Name: Diesel	
b. CAS Number:	
c. Average Liquid Surface Temperature: <u>73</u> °F.	
d. True Vapor Pressure at Average Liquid Surface Temperature: <u>0.01</u> psia.	
e. Liquid Molecular Weight: <u>188</u>	
4. Multiple Component Information	
a. Mixture Name:	
b. Average Liquid Surface Temperature: °F.	
c. Minimum Liquid Surface Temperature: °F.	
d. Maximum Liquid Surface Temperature: °F.	
e. True Vapor Pressure at Average Liquid Surface Temperature:	_ psia.
f. True Vapor Pressure at Minimum Liquid Surface Temperature:	_ psia.
g. True Vapor Pressure at Maximum Liquid Surface Temperature:	_ psia.
h. Liquid Molecular Weight:	
i. Vapor Molecular Weight:	
j. Chemical Components Information	

j. Chemical Components information				
Chemical Name	CAS Number	Percent of Total Liquid Weight (typical)	Percent of Total Vapor Weight (typical)	Molecular Weight

TABLE 7(b)

HORIZONTAL FIXED ROOF STORAGE TANK SUMMARY

I. Tank Identification (Use a separate form for each tank).					
1 Applicant's Name: Las Brisas Energy Center LLC					
2 Location (indicate on plot plan and provide coordinates):					
3 Tank No TNK-EWMAIN / Emission Point No TNK-EWMAIN					
5 FIN TNK-FWM			<u></u>		
6 Status: Now	topk [V]	OIN	Polocation []	Change of Service []	
Drovieus permiter ex					
Previous permit or ex	kemption	number(s) <u>NA</u>			
II. Tank Physical Charac	cteristics				
1. Dimensions					
a. Shell Length : _	4.6	ft.			
b. Diameter:	<u>3</u> f	t.			
c. Nominal Capac	ity or Wor	king Volume: 243	gallons.		
d. Turnovers per y	ear:	40.46			
e. Net Throughput	::	9,841 gallons/ye	ear.		
f. Maximum Filling	f. Maximum Filling Rate: <u>243</u> gallons/hour.				
g. Is the tank unde	erground?	Yes [] No [X]			
2. Paint Characteristic	s				
a. Shell Color/Shade: White/White [X] Aluminum/Specular [] Aluminum/Diffuse []					
Gray/Light [] Gray/Medium [] Red/Primer [] Other [] (Describe)					
b. Shell Condition : Good [X] Poor []					
3. Breather Vent Setting	<u>28</u>			SPECIFY	
5. Dicamer vent Settings			"Atmosphere" or		
Discharging to:				Discharging to:	
Valve Type	Number	Pressure Setting	Vacuum Setting	(name of abatament	
		(psig)	(psig)	(name of adatement	
Combination Vent Valve					

Table 7(b) HORIZONTAL FIXED ROOF TANK SUMMARY

Pressure Vent Valve

Vacuum Vent Valve

Open Vent Valve
Page 2

Permit No. TBD

Liquid Properties of Stored Material	
1. Chemical Category: Organic Liquids [] Petroleum Distillates [X] Crude Oils []
2. Single or Multi-Component Liquid	
Single [X] Complete Section III.3	
Multiple [] Complete Section III.4	
3. Single Component Information	
a. Chemical Name: <u>Diesel</u>	
b. CAS Number:	
c. Average Liquid Surface Temperature: <u>73</u> °F.	
d. True Vapor Pressure at Average Liquid Surface Temperature: <u>0.01</u> psia.	
e. Liquid Molecular Weight: <u>188</u>	
4. Multiple Component Information	
a. Mixture Name:	
b. Average Liquid Surface Temperature: °F.	
c. Minimum Liquid Surface Temperature: °F.	
d. Maximum Liquid Surface Temperature: °F.	
e. True Vapor Pressure at Average Liquid Surface Temperature:	_ psia.
f. True Vapor Pressure at Minimum Liquid Surface Temperature:	_ psia.
g. True Vapor Pressure at Maximum Liquid Surface Temperature:	_ psia.
h. Liquid Molecular Weight:	
i. Vapor Molecular Weight:	
j. Chemical Components Information	

Chemical Name	CAS Number	Percent of Total Liquid Weight (typical)	Percent of Total Vapor Weight (typical)	Molecular Weight

TABLE 7(b)

HORIZONTAL FIXED ROOF STORAGE TANK SUMMARY

I. Tank Identification	(Use a se	parate form for each ta	ank).			
1. Applicant's Name	: <u>Las Bris</u>	as Energy Center, Ll	_C			
2. Location (indicate	on plot pla	an and provide coordir	nates):			
3. Tank No. <u>тмк-ги</u>	B1 through	<u>тик-ғwв4</u> 4. Ет	iission Point No. <u>TN</u>	K-FWB1 through TNK-FWB4		
5. FIN <u>TNK-FWB1 th</u>	rough TNK	-FWB4 (CIN			
6. Status: New	tank [X]	Altered tank []	Relocation []	Change of Service []		
Previous permit or ex	xemption	number(s) <u>NA</u>				
II. Tank Physical Charac	cteristics					
1. Dimensions						
a. Shell Length :	4.6	ft.				
b. Diameter:	<u> 3 </u> f	ït.				
c. Nominal Capac	ity or Wor	king Volume: <u>243</u>	gallons.			
d. Turnovers per year: <u>224.78</u>						
e. Net Throughput : <u>54,674</u> gallons/year.						
f. Maximum Filling	f. Maximum Filling Rate: <u>243</u> gallons/hour.					
g. Is the tank unde	erground?	Yes [] No [X]				
2. Paint Characteristic	s					
a. Shell Color/Sha	de: Whit	e/White [X] Alum	inum/Specular []	Aluminum/Diffuse []		
Gray/Light []	Gray/Med	lium [] Red/Primer	[] Other [] (Desc	ribe)		
b. Shell Condition	: Good [X	[] Poor []			
3. Breather Vent Setting	gs			SPECIFY		
				"Atmosphere" or		
		Γ		Discharging to:		
Valve Type	Number	Pressure Setting	Vacuum Setting	(name of abatement		
		(psig)	(psig)	device)		
Combination Vent Valve						
Prassura Vant Valva						
vacuum vent Valve						
Open Vent Valve						

Table 7(b) HORIZONTAL FIXED ROOF TANK SUMMARY

Page 2

Permit No. TBD

. Liquid Properties of Stored Material	
1. Chemical Category: Organic Liquids [] Petroleum Distillates [X] Crude Oils []	
2. Single or Multi-Component Liquid	
Single [X] Complete Section III.3	
Multiple [] Complete Section III.4	
3. Single Component Information	
a. Chemical Name: <u>Diesel</u>	
b. CAS Number:	
c. Average Liquid Surface Temperature: <u>73</u> °F.	
d. True Vapor Pressure at Average Liquid Surface Temperature: <u>0.01</u> psia.	
e. Liquid Molecular Weight: <u>188</u>	
4. Multiple Component Information	
a. Mixture Name:	
 b. Average Liquid Surface Temperature: °F. 	
c. Minimum Liquid Surface Temperature: °F.	
d. Maximum Liquid Surface Temperature: °F.	
e. True Vapor Pressure at Average Liquid Surface Temperature: psia.	
f. True Vapor Pressure at Minimum Liquid Surface Temperature: psia.	
g. True Vapor Pressure at Maximum Liquid Surface Temperature: psia.	
h. Liquid Molecular Weight:	
i. Vapor Molecular Weight:	
j. Chemical Components Information	

ji ellellitea ee				
Chemical Name	CAS Number	Percent of Total Liquid Weight (typical)	Percent of Total Vapor Weight (typical)	Molecular Weight

TABLE 7(b)

HORIZONTAL FIXED ROOF STORAGE TANK SUMMARY

I. Tank	Identification	(Use a se _l	parate form for each ta	nk).		
1. Applicant's Name: Las Brisas Energy Center, LLC						
2. Lo	ocation (indicate	on plot pla	an and provide coordina	ates):		
3. Ta	ank No. <u>TNK-BFV</u>	VP1 throug	h TNK-BFWP4 4. Emiss	ion Point No. <u>тик-е</u>	3FWP1 through TNK-BFWP4	
5. FII	N <u>TNK-BFWP1 t</u>	hrough TN	K-BFWP4	CIN		
6. St	atus: New	tank [X]	Altered tank []	Relocation []	Change of Service []	
Previe	ous permit or ex	emption i	number(s) <u>NA</u>			
II. Tank	Physical Charac	teristics				
1. Dii	mensions					
а.	Shell Length : _	4.6	ft.			
b.	Diameter:	<u> </u>	t.			
C.	Nominal Capaci	ity or Worl	king Volume: 243	gallons.		
d. Turnovers per year: <u>259.42</u>						
e.	e. Net Throughput : <u>63,100</u> gallons/year.					
f. Maximum Filling Rate: <u>243</u> gallons/hour.						
g.	Is the tank unde	erground?	Yes [] No [X]			
2. Pa	int Characteristic	S				
а.	Shell Color/Shad	de: Whit	e/White [X] Alumii	num/Specular []	Aluminum/Diffuse []	
	Gray/Light []	Gray/Med	ium [] Red/Primer	[] Other [] (Desc	ribe)	
b.	Shell Condition	Good [X] Poor []			
3. Bre	eather Vent Setting	gs			SPECIFY	
					"Atmosphere" or	
					Discharging to:	
Valve Ty	ype	Number	Pressure Setting	Vacuum Setting	(name of abatement	
			(ps1g)	(psig)	device)	
Combina	ation Vent Valve					
Pressure	Vent Valve					
Vacuum	Vent Valve					
Open Ve	ent Valve					

Table 7(b) HORIZONTAL FIXED ROOF TANK SUMMARY

Page 2

Permit No. TBD

III. Liquid Properties of Stored Material	
1. Chemical Category: Organic Liquids [] Petroleum Distillates [X] Crud	le Oils []
2. Single or Multi-Component Liquid	
Single [X] Complete Section III.3	
Multiple [] Complete Section III.4	
3. Single Component Information	
a. Chemical Name: <u>Diesel</u>	
b. CAS Number:	
c. Average Liquid Surface Temperature: <u>73</u> °F.	
d. True Vapor Pressure at Average Liquid Surface Temperature:0.01_	_ psia.
e. Liquid Molecular Weight: <u>188</u>	
4. Multiple Component Information	
a. Mixture Name:	
b. Average Liquid Surface Temperature: °F.	
c. Minimum Liquid Surface Temperature: °F.	
d. Maximum Liquid Surface Temperature: °F.	
e. True Vapor Pressure at Average Liquid Surface Temperature:	psia.
f True Vener Pressure et Minimum Liquid Surface Temperature	
1. The vapor Pressure at Minimum Liquid Sufface Temperature.	psia.
g. True Vapor Pressure at Maximum Liquid Surface Temperature:	psia. psia.
 g. True Vapor Pressure at Maximum Liquid Surface Temperature: h. Liquid Molecular Weight: 	psia. psia.

j. Chemical Cor	mponents Informa	ation		
Chemical Name	CAS Number	Percent of Total Liquid Weight (typical)	Percent of Total Vapor Weight (typical)	Molecular Weight

Texas Commission on Environmental Quality Table 11 Fabric Filters

Tables, checklists, and guidance documents pertaining to air quality permits are available from the Texas Commission on Environmental Quality (TCEQ) Air Permits Division (APD) Web site at www.tnrcc.state.tx.us/permitting/airperm.

1. Emission Point Number and name (from Process Flow Diagram): See Table 1(a)							
2. Manufacturer and model	2. Manufacturer and model number (if available): TBD						
3. Name of source(s) or equ	3. Name of source(s) or equipment being controlled: TBD						
4. Type of particulate contr	olled:	r	TBD				
5.		GAS STI	REAM CHARA	CTERI	STICS		
Design Maximum Flow Rate (acfm)	Design Maximum Average Gas Stream Flow Rate (acfm) Expected Temperature Flow Rate (acfm)			m (°F)		Partic Loadi	culate Grain ng (grain/scf)
TBD	TB	D	TBD		Inlet:	TBD	Outlet: 0.01
Pressure Drop (inches of H ₂ O)	Water Va	Water Vapor Content of Effluent Stream (lb water/lb dry air)		tream		Rec	Fan quirements
TBD		7	ГBD		hp: TBI	D	ft ³ /min: TBD
6. PARTICULATE DISTRIBUTION (By Weight)							
Micron Range Inlet (Percentage) Outlet (Percentage)			Outlet (Percentage)				
0.0-0.5 TBD				TBD			
0.5-1.0 TBD TBD			TBD				
1.0-5.0 TBD			D			TBD	
5-10 TBD			TBD				
10-20			TBI	D			TBD
over 20			TBI	D			TBD
7.		FIL7	FER CHARACT	FERIST	ICS		
Filtering Velocity (acfm/ft ² of Cloth)	Ba	Bag Diameter (inches)]	Bag Length (fe	eet)	Total Number of Bags
TBD		TBD			TBD		TBD
8. Bag rows will be:		🗅 Sta	aggered		Straight		
9. Will walkways be pro	ovided betwe	en banks	of bags?:			□ YES	□ NO
10. Filtering material:		_			TBD		
11. Describe bag cleaning	g method and	l cycle.:			TBD		
12. Capital installed cost \$ TBD Annual operating cost \$ TBD				ost \$TBD			

Note: Attach the details regarding the principle of operation and an assembly drawing (front and top view) of the abatement device drawn to scale clearly showing the design, size and shape.

If the device has bypasses, safety valves, etc., include in the drawing and specify when such bypasses are to be used and under what conditions.

E DATA
Manufacturer Model No Serial No Orig. Mfr. Date Rebuild Date(s) No. of Cylinders Compression Ratio
Spark Ignited Dual Fuel Diesel
nged Turbocharged & I.C I.C. Water Temperature
Variable
Proposed Operating Range 2,309 HP
DATA LP GasOther X Diesel BTU/bhp-hr (HHV) (LHV) granins/100 scf)(weight percent)
CO g/bhp-hr ppmv Total HC g/bhp-hr ppmv ions versus engine speed and load. Adjustment SCR Catalyst alyst Other (Specify)

ADDITIONAL INFORMATION

- A. A copy of engine manufacturer's site rating or general rating specification for the engine model.
- B. Tyical fuel analysis, including sulfur content and heating value. For gaseous fuels, provide mole percent of constituents.
- C. Description of air/fuel ratio control system (manufacturers's information acceptable).
- D. Details regarding principle of operation of emissions controls. If add-on equipment is used, provide make and model and manufacturer's information.
- E. Exhaust parameter information on Table 1(a).

I	ENGINE DATA
EPN From Table 1(a) ENG-FWMAIN APPLICATION Gas Compression Electric Generation Electric Generation X Other (Specify) Pump Driver Electric	Manufacturer Model No. Serial No. Orig. Mfr. Date Nfr. Date New Rebuild Date(s) N/A No. of Cylinders Compression Ratio
X 4 Stroke Cycle Carburetted 2 Stroke Cycle Fuel Injected	Spark IgnitedDual Fuel XDiesel
Naturally Aspirated Blower/Pun Turbocharged Intercooled	np Scavenged Turbocharged & I.C (I.C.) I.C. Water Temperature
Ignition/Injection Timing:Fixed	Variable
Mfg. Rating Horsepower <u>360 HP</u> <u>360 H</u> Speed (rpm)	Proposed Operating Range
	FUEL DATA
Field Gas Landfill Gas Natural Gas Digester Gas	LP Gas Other
Engine Fuel ConsumptionBHeat Value (specify units)19,236 Btu/lbFuel Sulfur Content0.05	TU/bhp-hr (HHV) (LHV) (granins/100 scf)(weight percent)
FULL LO	AD EMISSIONS DATA
No _x g/	bhp-hr CO g/bhp-hr
VOC(C ₃ ⁺)g/	bhp-hr Total HC g/bhp-hr bmv ppmv
Attach information show	ing emissions versus engine speed and load.
Method of Emissions Control: Lean Operation Pa Stratified Charge NS	SCR Catalyst SCR Catalyst Other (Specify)

ADDITIONAL INFORMATION

- A. A copy of engine manufacturer's site rating or general rating specification for the engine model.
- B. Tyical fuel analysis, including sulfur content and heating value. For gaseous fuels, provide mole percent of constituents.
- C. Description of air/fuel ratio control system (manufacturers's information acceptable).
- D. Details regarding principle of operation of emissions controls. If add-on equipment is used, provide make and model and manufacturer's information.
- E. Exhaust parameter information on Table 1(a).

ENG	GINE DATA				
EPN From Table 1(a) ENG-FWB1 through ENG-FWB APPLICATION Gas Compression Electric Generation Refrigeration X Other (Specify) Pump Driver Pump Driver	4 Manufacturer Model No.				
X 4 Stroke Cycle Carburetted 2 Stroke Cycle Fuel Injected	Spark IgnitedDual Fuel XDiesel				
Naturally Aspirated Blower/Pump S Turbocharged Intercooled (I.C.)	cavenged Turbocharged & I.C .) I.C. Water Temperature				
Ignition/Injection Timing:Fixed	Variable				
Mfg. Rating Horsepower 100 HP Speed (rpm)	Mfg. RatingProposed Operating RangeHorsepower100 HPSpeed (rpm)				
FI	ΙΕΙ ΒΑΤΑ				
Field Gas Landfill Gas Digester Gas BTU/Heat Value (specify units) 19,236 Btu/lb Fuel Sulfur Content 0.05	LP Gas Other LP Gas Other Other (HHV) (LHV) (granins/100 scf)(weight percent)				
FULL LOAD EMISSIONS DATA					
Nox g/bhp- ppmv ppmv VOC(C3^+) g/bhp- ppmv ppmv	hr CO g/bhp-hr ppmv hr Total HC g/bhp-hr ppmv				
Attach information showing of Mathad of Emissions Controls	emissions versus engine speed and load.				
Lean Operation Param	eter Adjustment SCR Catalyst Catalyst Other (Specify)				

ADDITIONAL INFORMATION

- A. A copy of engine manufacturer's site rating or general rating specification for the engine model.
- B. Tyical fuel analysis, including sulfur content and heating value. For gaseous fuels, provide mole percent of constituents.
- C. Description of air/fuel ratio control system (manufacturers's information acceptable).
- D. Details regarding principle of operation of emissions controls. If add-on equipment is used, provide make and model and manufacturer's information.
- E. Exhaust parameter information on Table 1(a).

ENGINE DATA	
EPN From Table 1(a) ENG-BFWP1 through I APPLICATION Gas Compression Electric Generation Electric Generation X Other (Specify) Pump Driver	ENG-BWFP4 Manufacturer Model No.
X 4 Stroke Cycle Carb 2 Stroke Cycle Fuel	DurettedSpark IgnitedDual Fuel InjectedDiesel
Naturally Aspirated Blockstein Turbocharged Integration	ower/Pump Scavenged Turbocharged & I.C tercooled (I.C.) I.C. Water Temperature
Ignition/Injection Timing:	_FixedVariable
Mfg. Rating Proposed Operating Range Horsepower 2,000 HP Speed (rpm)	
	FUEL DATA
Field Gas Landfill Natural Gas Digester	Gas LP Gas Other Gas X Diesel
Heat Value (specify units) 19,236 Fuel Sulfur Content 0	BTU/bhp-hr <u>6 Btu/lb</u> (HHV) (LHV) <u>0.05</u> (granins/100 scf)(weight percent)
Heat Value (specify units) 19,236 Fuel Sulfur Content 0	BTU/bhp-hr <u>6 Btu/lb</u> (HHV) (LHV) <u>0.05</u> (granins/100 scf)(weight percent)
Heat Value (specify units) 19,236 Fuel Sulfur Content 0 FU Nox 0 VOC(C3^+) 0	BTU/bhp-hr 6 Btu/lb (HHV) (LHV) 0.05 (granins/100 scf)(weight percent) ULL LOAD EMISSIONS DATA g/bhp-hr CO g/bhp-hr ppmvppmv g/bhp-hr Total HCg/bhp-hr ppmvppmv
Heat Value (specify units) 19,236 Fuel Sulfur Content 0 Fuel Sulfur Content 0 VOC(C ₃ ⁺) 0 Attach informat 0	BTU/bhp-hr 6 Btu/lb (HHV) (LHV) 0.05 (granins/100 scf)(weight percent) ULL LOAD EMISSIONS DATA g/bhp-hr CO g/bhp-hr ppmv ppmv g/bhp-hr Total HC g/bhp-hr ppmv ppmv ppmv ppmv tion showing emissions versus engine speed and load.

ADDITIONAL INFORMATION

- A. A copy of engine manufacturer's site rating or general rating specification for the engine model.
- B. Tyical fuel analysis, including sulfur content and heating value. For gaseous fuels, provide mole percent of constituents.
- C. Description of air/fuel ratio control system (manufacturers's information acceptable).
- D. Details regarding principle of operation of emissions controls. If add-on equipment is used, provide make and model and manufacturer's information.
- E. Exhaust parameter information on Table 1(a).